Investigação da Exposição a Agrotóxicos e Risco de Câncer no Estado do Espírito Santo

ESPÍRITO SANTO

2024 (revisado)

José Renato Casagrande Governador do Estado do Espírito Santo

> Miguel Paulo Duarte Neto Secretário de Estado da Saúde

Orlei Amaral Cardoso Subsecretário de Vigilância em Saúde

Juliano Mosa Mação Gerente de Vigilância em Saúde (GEVS)

Romildo Luiz Monteiro Andrade

Grupo de pesquisa GeoMorb - Grupo de Pesquisa da Morbidade Compulsória

Núcleo Especial de Informação em Saúde (NESIS)

Revisão realizada em 21 de janeiro de 2024 por:

Kamila Tessarolo Velame – Enfermeira, mestra em Doenças Infecciosas pela Universidade Federal do Espírito Santo e Doutora em Epidemiologia pela Faculdade de Saúde Pública da Universidade de São Paulo (USP).

Dados Internacionais de Catalogação na Publicação

(CIP) (Câmara Brasileira do Livro, São Paulo, Brasil)

Geoprocessamento das doenças de notificação compulsória no estado do Espírito Santo: uma aproximação à morbidade georreferenciada: geoprocessamento dos agravos e das doenças de notificação compulsória / Romildo L. M. Andrade. [et al.]. - Vitória, ES: Ed. dos Autores, 2021.

Demais autores: Adelmo Inácio Bertolde, Anselmo Dantas, Celso B. Ferreira, Saulo Almeida Morellato

ISBN 978-65-00-13188-8

- 1. Clima 2. Doenças Aspectos sociais
- 3. Epidemiologia 4. Geoprocessamento
- 5. Geoprocessamento Espírito Santo (ES)
- 6. Sistema Único de Saúde (Brasil)
- I. Andrade, Romildo L. M. II. Bertolde, Adelmo Inácio. III. Dantas, Anselmo. IV. Ferreira, Celso B. V. Morellato, Saulo Almeida.

20-50226 CDD-362.19698

RELATÓRIO TÉCNICO FINAL

PROJETO DE GEOPROCESSAMENTO DAS DOENÇAS DE NOTIFICAÇÃO COMPULSÓRIA NO ESTADO DO ESPÍRITO SANTO: Exposição a Agrotóxicos e Risco de Câncer no Estado do Espírito Santo, 2008-2019.

Pesquisador Responsável

Romildo Luiz Monteiro Andrade

Instituição Executora

Secretaria de Estado da Saúde- SESA/Gerência de Vigilância em Saúde/Núcleo Especial de Sistemas de Informação em Saúde- NESIS;

Projeto GeoMorb II

EDITAL ICEPI Nº: nº 32/2021

EQUIPE ELABORADORA

Romildo Luiz Monteiro Andrade - SESA-GVS; Pesquisador Doutor Coordenador.

Anselmo Dantas - SESA; Pesquisador Colaborador Mestre.

Edleusa Gomes Ferreira Cupertino - Pesquisadora Colaboradora Mestranda.

Luciana Marciana Vilela Mugrabi - Pesquisadora Colaboradora Mestre.

Saulo Almeida Morellato - Pesquisador Professor Doutor.

Cristiano Soares da Silva Dell'Antonio - SESA; Pesquisador Colaborador Doutor.

PARCERIAS INSTITUCIONAIS

Projeto GEOMORB II

Universidade Federal do Espírito Santo (UFES)

Secretaria de Estado da Saúde do Espírito Santo (SESA-ES)

APRESENTAÇÃO

A Subsecretaria de Vigilância em Saúde da Secretaria de Estado da Saúde do Espírito Santo - SSVS/SESA-ES frente ao seu compromisso em defesa da saúde capixaba promove a entrega do trabalho do GeoMorbII com o tema da investigação da Incidência de Câncer e uso de agrotóxicos no estado do ES.

O objetivo foi investigar o cenário socioambiental verificando possíveis associações entre a incidência de câncer e o uso de agrotóxicos nos municípios do ES. Buscou-se aprofundar o conhecimento entre as realidades ambientais com potenciais efeitos cancerígenos para fundamentar seu enfrentamento pelas instâncias dos diversos níveis do Sistema Único de Saúde (SUS) no estado do ES.

A complexidade da operacionalização de estudos desta ordem depara-se com dificuldades desde a disponibilidade de dados referentes ao consumo, ao uso e a comercialização das substâncias ditas agroquímicas, além da disponibilidade temporal dos dados de incidência de casos de câncer. A Gerência Estratégica de Vigilância em Saúde (GEVS) reacendendo o compromisso de defender as condições de saúde dos capixabas traz a análise inicial sobre o **Uso de agrotóxicos e a incidência de Câncer no estado do ES.**

A superação dos obstáculos metodológicos sob a ótica epidemiológica fez com que optássemos pela divulgação dos resultados no formato de **Relatório Técnico**, com o propósito de informar os achados encontrados e resgatar a importância de se dispor de um sistema de monitoramento a respeito da dispensação de substâncias agroquímicas a nível estadual, sob pena de permanecermos no obscurantismo acerca de suas consequências sobre a saúde da população do ES.

Desejamos uma boa leitura a todos!

- Objetivo: A investigação epidemiológica do câncer no Estado do ES tem por objetivo investigar a associação entre o uso de agrotóxico e a incidência de câncer, além de fornecer fundamentos para a construção da política pública estadual voltada ao enfrentamento do câncer no estado do ES.
- Métodos: É um estudo ecológico da ocorrência do câncer e os fatores ambientais de risco, com destaque para o uso de agrotóxicos. A condição de exposição foi operacionalizada mediante *proxy* da razão *per capita* municipal entre o número de unidades agrícolas que utilizam agrotóxicos e a população municipal exposta ao risco. A condição de desfecho empregada foi a incidência municipal de câncer padronizada para a população regional de saúde no estado do ES.
- Resultado: As análises estatísticas sugeriram uma correlação entre o aumento na razão per capita municipal de unidades agrícolas que usam agrotóxicos e um aumento na taxa de incidência municipal de câncer. No entanto, registra-se uma limitação pela escassez de dados mais robustos para o período estudado.

LISTA DE TABELAS

- **Tabela 1.** Taxas regionais de incidência de câncer nos períodos estudados.
- **Tabela 2**. Taxas médias de incidência de câncer segundo Região de Saúde e análise intra-região-período.
- **Tabela 3.** Índice de correlação espacial das variáveis de desfecho e exposição.
- Tabela 4. Desempenho dos modelos de regressão segundo o critério WAIC.
- **Tabela 5.** Estimativas do modelo Poisson Espacial para a variável câncer.
- **Tabela 6.** Regressão de Prais-Winsten das taxas de incidência de câncer padronizadas pelas regiões de saúde e o número de unidades agrícolas e percentual de unidades agrícolas.

LISTA DE FIGURAS

- **Figura 1**. Taxa de incidência de câncer no estado do ES segundo região de Saúde para o período de 2006-2012.
- **Figura 2.** Taxa de incidência de câncer no estado do ES segundo região de Saúde para o período de 2013-2019.
- Figura 3. Representação esquemática da matriz de correlação de dados por área.
- **Figura 4**. Taxa Padronizada de Incidência cumulativa de câncer no estado do ES para o período de 2006-2012.
- **Figura 5**. Taxa padronizada de incidência cumulativa de câncer no estado do ES para o período de 2013-2019.

LISTA DE SIGLAS E ABREVIATURAS

ABRASCO - Associação Brasileira de Saúde Coletiva

AIC - Critério de Informação de Akaike

APC - Variação Percentual Anual

BIC - Critério de Informação Bayesiano

CA 2013 – Incidência de Câncer 2013

CA 2014 - Incidência de Câncer 2014

CA_2015 – Incidência de Câncer 2015

CA 2016 – Incidência de Câncer 2016

CA_2017 – Incidência de Câncer 2017

CA_2018 – Incidência de Câncer 2018

CA 2019 – Incidência de Câncer 2019

CA 2020 – Incidência de Câncer 2020

CA 2021 - Incidência de Câncer 2021

CACON - Centro de Alta Complexidade em Oncologia

DANT – Doenças e Agravos Não Transmissíveis

DATASUS - Departamento de Informática do SUS

id – Número de identificação

INPEV – Instituto Nacional de Processamento de Embalagens

INCA – Instituto Nacional de Câncer

GeoMorb – Grupo de Pesquisa da Morbidade Compulsória

GEVS - Gerência Estratégica de Vigilância em Saúde

IBGE – Instituto Brasileiro de Geografia e Estatística

IMG – Índice de Moran Global

IML – Índice de Moran Local

MS – Ministério da Saúde

NEVE - Núcleo Especial de Vigilância Epidemiológica

NM Munc – Nome do Município

NmMunicp – Nome do Município

Num Und - Número de Unidades Agrícolas

Pop 2000 – População ano 2000

```
Pop_2001 - População ano 2001
```

Pop 2002 – População ano 2002

Pop 2003 – População ano 2003

Pop 2004 – População ano 2004

Pop 2005 – População ano 2005

Pop_2006 – População ano 2006

Pop_2007 – População ano 2007

Pop 2008 – População ano 2008

Pop_2009 – População ano 2009

Pop_2010 – População ano 2010

Pop 2011 – População ano 2011

Pop_2012 – População ano 2012

Pop 2013 – População ano 2013

Pop 2014 - População ano 2014

Pop 2015 – População ano 2015

Pop 2016 – População ano 2016

Pop 2017 – População ano 2017

Pop 2018 – População ano 2018

Pop 2019 – População ano 2019

Pop_2020 – População ano 2020

Pop 2021 – População ano 2021

QtilRzPerct – Quartil da Razão per capita Unidades agrícolas que usam agrotóxicos

QtilUnd_Agrtx1 – Quartis de Unidades Agrícolas que usam agrotóxicos

OrtlUndAtox2 – Quartis de Unidades Agrícolas que usam agrotóxico

PercUnidAgrcl – Percentual de Unidades Agrícolas que usam agrotóxico

PIB - Produto Interno Bruto

PDR – Plano Diretor de Regionalização

QtilRzPerct – Quartil da Razão per capita Unidades agrícolas que usam agrotóxicos

QtilUnd Agrtx1 – Quartis de Unidades Agrícolas que usam agrotóxicos

QrtlUndAtox2 – Quartis de Unidades Agrícolas que usam agrotóxico

RCBP – Registro de Câncer de Base Populacional

RzPercta - Razão per capita de Unidades Agrícolas

SESA/ES – Secretaria de Estado da Saúde do Espírito Santo

SINAN - Sistema de Informação de Agravos de Notificação

SUS – Sistema Único de Saúde

TERPerct – Tercil da Razão per capita de Unidades Agrícolas

TT_CASO_Neo - Total de casos de Câncer no período

TxIncCA – Taxa de incidência municipal de câncer

UF – Unidade de Federação

UFES – Universidade Federal do Espírito Santo

Uni_Agrtox – Número de Unidades Agrícolas que usam agrotóxicos

SUMÁRIO

1. INTRODUÇÃO	14
1.1 ANTECEDENTES	14
1.2 O PROBLEMA NO ÂMBITO DO SISTEMA ÚNICO DE SAÚDE	15
1.3 DEFINIÇÃO	16
1.4 O SISTEMA DE INFORMAÇÃO DE CÂNCER	17
2. OBJETIVO	18
3. MÉTODO	19
3.1 TIPO DE ESTUDO.	19
3.2 LOCAL DA ESTUDO	19
3.3 A EXPOSIÇÃO	20
3.4 DESFECHO	22
3.5 ESTRATÉGIA DE CONDUÇÃO DO ESTUDO	22
3.6 ASPECTOS ÉTICOS E ADMINISTRATIVOS	24
4. RESULTADOS	25
4.1 DEPENDÊNCIA ESPACIAL	28
4.2 DEPENDÊNCIA TEMPORAL	32
4.3 ASSOCIAÇÃO ENTRE CÂNCER E AGROTÓXICOS	33
5. DISCUSSÃO	38
6. CONCLUSÃO	41
7. REFERÊNCIAS	42
ANEXOS	45
ANEXO 1 PLANO DIRETOR DE RECIONALIZAÇÃO	45

1. INTRODUÇÃO

1.1 ANTECEDENTES

O termo câncer é utilizado para designar um grande grupo de doenças, cuja sinonímia refere-se a **neoplasias ou tumores**. A origem fisiopatológica consiste no aparecimento de células anormais com crescimento além de seus limites habituais, podendo metastizar-se para outros segmentos do corpo atingindo outros sistemas orgânicos (FILHO, 2006).

No Brasil, as neoplasias consistem na segunda causa de morte na população brasileira correspondendo a 17,3% dos óbitos para o ano de 2018. Esse padrão é observado em algumas regiões do país, com exceção da região Norte, na qual a mortalidade por causas externas ocupa o segundo lugar com 18,1%, deslocando as neoplasias para o terceiro lugar com 14% dos óbitos. Proporcionalmente, a região Sul concentra o maior número de óbitos por neoplasias (21,2%), seguida da região Sudeste (17,9%), Centro-Oeste (17,4%) e Nordeste (14,7%) (INCA, 2019).

Segundo Dutra *et al* (2021), desde 2008, o Brasil é o líder mundial no consumo de agrotóxicos. Milhões de toneladas de produtos são lançados no ambiente em zonas rurais e em áreas periurbanas. No ano de 2013, foram comercializadas 495,7 mil toneladas de pesticidas, enquanto em 2017 o número chegou a 539,9 mil toneladas de pesticidas.

Segundo Neves *et al* (2020), a taxa de crescimento do mercado brasileiro de agrotóxicos no período 2000-2010 foi de 190%, porcentagem superior ao crescimento do mercado mundial, que obteve uma taxa de 93%. De Miranda Noblat *et al* (2021),

referem que outro agravante relevante no Brasil é que o aumento exponencial no consumo de agentes químicos não se fez acompanhar do aumento da área plantada. De acordo com o Instituto Nacional de Processamento de Embalagens (INPEV), o estado do Espírito Santo destinou 369 toneladas de agroquímicos em 2014 e 348 toneladas no ano de 2015, ocupando a 17ª posição do ranking nacional dentre os estados da federação, mediante contagem de embalagens vazias de defensivos agrícolas (BRASIL, 2018).

A Associação Brasileira de Saúde Coletiva (ABRASCO) publicou o *Dossiê: um* alerta sobre os impactos dos agrotóxicos na saúde, que contém alerta de pesquisadores para os impactos socioambientais do uso indiscriminado dos agrotóxicos no Brasil. Advertem sobre os severos impactos na saúde pública e na segurança alimentar e nutricional da população brasileira, considerando que a exposição aos agrotóxicos pode causar danos à saúde, desde alterações hormonais e reprodutivas até cânceres. (CARNEIRO *et al*, 2015).

De Jesus Porto (2021) informa que estimativas modestas apontam para 540 mil o número de trabalhadores rurais anualmente contaminados por agrotóxicos, sendo que 4 mil acabam morrendo em função desta contaminação. É possível que frente às condições de subnotificação, estes valores estejam subestimados minimizando a gravidade da situação de saúde dos trabalhadores rurais e da população em geral.

1.2 O PROBLEMA NO ÂMBITO DO SISTEMA ÚNICO DE SAÚDE (SUS)

O setor da saúde no ES busca definir e implementar ações voltadas para a vigilância em saúde, especialmente no campo de conhecimento da vigilância ambiental, sobretudo, ao tema das intoxicações e do câncer associado ao uso de agrotóxicos.

A despeito da magnitude e letalidade dos casos de intoxicações agudas, destaca-se ainda, a ocorrência de efeitos subagudos e crônicos, a maioria não identificada como relacionada ao uso de agrotóxicos pelos serviços de saúde. De acordo com Jobim *et al*, (2010) os efeitos crônicos podem ser tão prejudiciais quanto os agudos, uma vez que existem forte sugestões apoiadas por evidências que apontam consequências deletérias na fertilidade, na etiologia de danos neurológicos e possivelmente no aumento da suscetibilidade a neoplasias.

Embora a pesquisa brasileira sobre o impacto do uso de agrotóxicos sobre a saúde humana também tenha crescido nos últimos anos, ainda é insuficiente o acúmulo de conhecimentos para reconhecer a extensão da carga química de exposição ocupacional e a dimensão dos danos à saúde, decorrentes do uso intensivo de agrotóxicos. Um dos problemas apontados é a falta de informação sobre o consumo de agrotóxicos e a insuficiência dos dados sobre intoxicações por estes produtos (FARIA, FASSA e FACCHINI, 2007).

1.3 DEFINIÇÃO

A Lei nº 7.802, de 11 de julho de 1989 define agrotóxicos como:

- a) Os produtos e os agentes de processos físicos, químicos ou biológicos destinados ao uso nos setores de produção, no armazenamento e beneficiamento de produtos agrícolas, nas pastagens, na proteção de florestas nativas ou implantadas, e de outros ecossistemas e, também, de ambientes urbanos, hídricos e industriais, cuja finalidade seja alterar a composição da flora ou da fauna, a fim de preservá-las da ação danosa de seres vivos considerados nocivos;
- b) Substâncias e produtos, empregados como desfolhantes, dessecantes, estimuladores e inibidores de crescimento.

Podem ser entendidos como "**produtos** *químicos usados no extermínio de pragas*", cuja sinonímia refere-se a agroquímicos, fitossanitários, pesticidas, praguicidas, inseticidas, fungicidas, herbicidas. Seu uso extrapola as atividades agrícolas desde a preparação do solo, ao beneficiamento de produtos agrícolas, nas pastagens e é empregado nas florestas plantadas dispondo ainda de uso *não agrícola* destinado a florestas nativas e outros ecossistemas.

Lopes *et al* (2018), em um estudo de revisão sistemática, investigaram os efeitos dos agrotóxicos sobre a saúde humana, compreendendo o período de 2011 a 2017 e identificaram 116 estudos demonstrando efeitos negativos para a saúde humana e ambiental. Tais iniciativas reforçam a necessidade do setor da saúde em conhecer e investigar o uso e os efeitos destas substâncias e suas consequências sobre a saúde da população capixaba.

A relevância do problema aponta para a necessidade de ações estruturantes no campo da vigilância em saúde a fim de conhecer a realidade local do ES. Estimativas futuras apontam para ocorrência de 10.830 casos novos de câncer no ano de 2023, dos

quais 5.500 ocorrerão na população masculina e 5.330 na população feminina (INCA, 2019). A agenda de pesquisa em saúde pública para os próximos anos pode contribuir para demonstrar possíveis fontes carcinogênicas no ambiente e inferir estimativas acerca de segmentos populacionais expostos como trabalhadores rurais e segmentos populacionais que entram em contato com agroquímicos considerando as possíveis correlações entre o uso de agrotóxicos e a incidência de câncer no estado do ES.

1.4 O SISTEMA DE INFORMAÇÃO DE CÂNCER

O Registro de Câncer de Base Populacional (RCBP) no ES foi criado no ano de 1998, pela Secretaria de Estado da Saúde do Espírito Santo. Instalado sob assessoria do Instituto Nacional de Câncer (INCA)/Ministério da Saúde (MS) encontra-se situado na Gerência Estratégica de Vigilância em Saúde (GEVS)/Núcleo Especial de Vigilância Epidemiológica (NEVE)/Vigilância das Doenças e Agravos não Transmissíveis (DANT)/Vigilância do Câncer.

A área de cobertura incluía os casos de residentes na Região Metropolitana da Grande Vitória, abrangendo os municípios de Vitória, Vila Velha, Viana, Cariacica, Serra, Fundão e Guarapari, alcançando cerca de 48% da população do ES. Os dados armazenados dispõem de uma série histórica de 1997 a 2012, devidamente consolidados e validados. Na atualidade, o RCBP abrange os 20 municípios da Região Metropolitana e 26 municípios da Região Sul. Nessa perspectiva, o RCBP cobre cerca de 59% dos municípios capixabas.

O presente trabalho contribuiu como abordagem exploratória por parte da vigilância em saúde da SESA-ES, na investigação sobre o uso de agrotóxicos e a incidência de câncer no estado do ES.

2. OBJETIVO

O presente projeto de pesquisa buscou contribuir de forma objetiva ao estudo dos cânceres enquanto problema de saúde, de forma a fornecer fundamentos para a construção de uma política pública estadual voltada ao enfrentamento dos cânceres no estado do ES e com o propósito de abordar o tema da *Exposição a agrotóxicos e riscos de desenvolvimento de câncer no estado do ES*.

3. MATERIAL E MÉTODOS

3.1 TIPO DE ESTUDO

Trata-se de um estudo ecológico, que utilizou o método de agregados municipais de eventos de saúde segundo critérios de definição para os casos notificados confirmados de câncer em residentes no estado do ES, compreendendo o período de 2006 a 2019.

3.2 LOCAL DE ESTUDO

O estado do ES está localizado na região Sudeste do Brasil, contribuindo em torno de 2,3-2,5% do Produto Interno Bruto (PIB) do Brasil. Internamente, o PIB do ES apresenta uma composição setorial de 9,3% na atividade agropecuária; 34,5% na atividade industrial e 56,3% na atividade de serviços. O estado possui extensão territorial de 46.098,571 Km², comportando 78 municípios, segundo estimativas do Instituto Brasileiro de Geografía e Estatística (IBGE, 2000).

De acordo com o Plano Diretor de Regionalização (PDR) de 2011, que traz uma divisão regional equânime do ponto de vista geográfico e tendo por disponibilidade os

serviços de saúde, a Região Norte é composta por 14 municípios, a Região Central por 18 municípios, a Região Metropolitana por 20 municípios e a Região Sul por 26 municípios (ANEXO 1).

3.3 A EXPOSIÇÃO

A variável de exposição consistiu na elaboração da variável composta da razão *per capita* entre o número de municípios que utilizam agrotóxicos e a população municipal para os anos de 2006 e 2017, cujos dados originais foram obtidos a partir do site do IBGE pelo sistema SIDRA (Sistema IBGE de Recuperação Automática) que permitiu a tabulação de dados a partir das especificações a seguir:

a) Referente ao ano de 2006:

- Tabela 910 Contendo número de estabelecimentos agropecuários por uso de agrotóxicos, associação à cooperativa e/ou entidade de classe, grupos de área de lavoura e grupo de área total do estabelecimento extraídos no site:
 https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2006/segunda-apuracao#caracteristicas-dos-estabelecimentos-agropecuarios.
- Tabela 913 Contendo o número de estabelecimentos agropecuários por uso de agrotóxicos, tipo de equipamento de aplicação utilizado, destino das embalagens, uso de equipamentos de proteção, existência de pessoas intoxicadas e grupo de área de lavoura do estabelecimento. Encontrado no site: https://sidra.ibge.gov.br/Tabela/913.

b) Referente ao ano 2017:

- Tabela 6851 Contendo o número de estabelecimentos agropecuários, por tipologia, uso de agrotóxicos, sexo do produtor, condição do produtor em relação às terras, escolaridade do produtor e associação do produtor à cooperativa e/ou à entidade de classe extraídos do site: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017.
- Tabela 6852 Contendo o número de estabelecimentos agropecuários, por tipologia, uso de agrotóxicos, origem da orientação técnica recebida, forma de obtenção de informações técnicas recebidas pelo estabelecimento, grupos de área de lavoura e grupos de área total extraídos do site: https://sidra.ibge.gov.br/pesquisa/censo-agropecuario/censo-agropecuario-2017.

A análise exploratória teve por início a avaliação da exposição ao uso de agrotóxicos e risco de desenvolvimento de câncer no Estado do ES mediante a correlação entre a razão *per capita* entre as unidades agrícolas que utilizam agrotóxicos, população municipal e as taxas de incidência municipais de câncer por 100.000 habitantes. Para tal, elaborou-se uma matriz de correlação das variáveis estudadas compreendendo:

- 1. Número total de casos de câncer (TT CASO NEO);
- 2. Taxa de incidência municipal de câncer por 100.000 habitantes (TxIncCa);
- 3. Número de unidades agrícolas municipais (Num Und);
- 4. Número de Unidades agrícolas que usam agrotóxico (Uni Agrtox);

- 5. Percentual de unidades agrícolas que usam agrotóxicos (PercUnidAgrcl); e,
- 6. Razão per capita de unidades agrícolas que usam agrotóxicos (RzPercta).

3.4 DESFECHO

A variável de desfecho teve por base o repositório de dados epidemiológicos sobre a incidência de câncer do INCA tabulados em Painel Oncologia – BRASIL: Casos por ano do diagnóstico segundo município da residência; Unidade de federação (UF) da residência: 32 Espírito Santo; Ano do diagnóstico: 2013-2021; em 29/04/2022.

As variáveis demográficas populacionais foram obtidos no portal DATASUS/
TABNET-ES e tabulados em: população residente - Estudo de Estimativas
Populacionais por Município; Idade e sexo 2000-2021 – Brasil; População residente
por município e ano; UF: Espírito Santo; Período: 2000-2021; em 03/05/2022.

A partir da ocorrência municipal dos casos de câncer foram calculadas as taxas de incidência populacionais por 100.000 habitantes padronizadas para o total das populações regionais, a fim de se ajustarem às diferenças etárias e das influências dos pequenos números no denominador. Através dos dados de incidência de casos foram estimadas as taxas de incidência cumulativas municipais por 100.000 habitantes para os períodos de 2008-2012 e, 2013-2019.

3.5 ESTRATÉGIA DE CONDUÇÃO DO ESTUDO

A execução do trabalho cumpriu as seguintes etapas:

- a) Obtenção dos dados junto aos bancos de dados do SINAN-ES
 (Painel-Oncologia BRASIL (site: https://www.datasus.gov.br), IBGE (site: https://www.ibge.gov.br) e os dados demográficos em População residente DATASUS (site: https://www.saude.gov.br);
- b) Organização, ajuste do banco de dados para os cálculos das taxas de incidência municipais padronizadas para a população das regiões de saúde;
- c) Análise descritiva das taxas de incidência municipais de câncer no ES;
- d) Análise exploratória de dados, a fim de identificar padrões de distribuição espacial das doenças e agravos notificados, mediante as estimativas dos índices de Moran para a medida da autocorrelação espacial das taxas de incidência municipais de câncer para os períodos de 2006-2012 e, 2013-2019;
- e) A análise da dependência temporal entre as taxas de incidência foi verificada mediante emprego da regressão de Prais-Winsten, utilizando o método dos mínimos quadrados generalizados para estimar os parâmetros do modelo cujos erros estão correlacionados em série num processo autorregressivo de primeira ordem;
- f) Na modelagem socioambiental, considerou-se os modelos de regressão de Poisson e Binomial Negativa aplicado às taxas de incidência municipais. A

escolha entre os modelos empregados foi balizada pelo Critério de Informação de Akaike (AIC) e pela significância estatística do parâmetro de dispersão da Binomial Negativa.

- g) Procedeu-se à adequação da modelagem para dados com o objetivo de verificar a presença de possíveis observações influentes, dada a presença de valores discrepantes passou-se a utilizar a regressão robusta.
- h) Análise multivariada: empregou-se análise fatorial exploratória a partir das taxas de incidência municipais a fim de identificar as relações subjacentes entre as variáveis medidas na carga das DANT.

3.6 ASPECTOS ÉTICOS E ADMINISTRATIVOS

O projeto de pesquisa encontra-se registrado na Plataforma Brasil submetido em 24/10/2018, sob nº CAAE: 01712418.6.0000.5060, tendo como instituição sede a Secretaria de Estado da Saúde – SESA/ES. Os aspectos éticos envolvidos se deparam com a manipulação de dados secundários em saúde sendo dispensado o Termo de Consentimento Livre Esclarecido. Contudo, para garantir a confidencialidade buscou-se adesão ao termo de compromisso dos autores, respeitando a inviolabilidade e aos princípios éticos de manipulação de dados em saúde. O presente projeto não utilizou recursos financeiros de nenhuma instituição de fomento de pesquisa.

4. RESULTADOS

Globalmente, as médias das taxas municipais de incidência padronizadas para as populações regionais apresentaram um comportamento ascendente no período estudado. No período de 2006-2012 as taxas foram de 8,39 (Dp +/- 13,39), já no período de 2013-2019, as taxas foram de 51,22 (Dp +/- 67,33), o que demonstra um crescimento em torno de 600%. Buscou-se, então, verificar se as taxas médias para o período de 2006-2012 tinham diferenças significativas em relação às encontradas para o período 2013-2019. Foram encontrados os seguintes resultados: taxa de incidência = 8,387252 (Dp +/- 13,39438; IC: 5,367286;11,40722) para o período de 2006-2012 e, taxa de incidência = 51.22628 (Dp +/- 51.22628; IC: 36.04415;66.40842).

As taxas médias de incidência obtiveram diferenças estatisticamente significativas (*p-valor* = 0,0000 e IC: 30.42489;55.25317), apontando que o grande aumento da incidência de câncer não ocorreu ao acaso. Tal evidência é corroborada com os achados de que entre os períodos de 2006-2012 e 2013-2019. As taxas de incidência nas inter-regiões de saúde tiveram tendência crescente no estado ES, ocorreu crescimento em todas as regiões de saúde, e não particularizado ou isoladamente por uma região de saúde (**Tabela 1**).

Todavia as diferenças inter-regiões de saúde não se mostraram significativas nos períodos estudados. Para o período de 2006-2012, a região Metropolitana foi a que

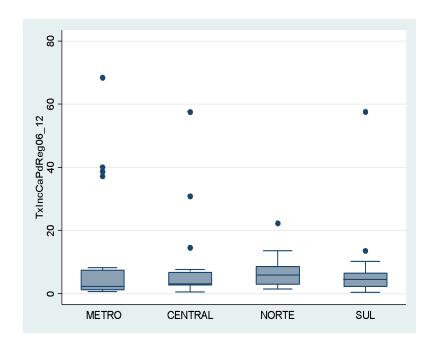
apresentou a maior taxa de incidência de câncer por 100.000 habitantes, com a média de 11,19 (Dp +/- 3,02), seguida da região Central com 8,5 (Dp +/- 3,19) casos de câncer por 100.000 habitantes. No período de 2013-2019, a região Norte foi a que apresentou maiores taxas de incidência de câncer por 100.000 habitantes, com 57,69 (Dp +/- 18,24), seguida da Central com 56,34 casos de câncer por 100.000 habitantes (Dp +- 16,04) (Tabela 2). Porém, as análises entre os períodos de 2006-2012 e 2013-2019 mostraram diferenças significativas para todas as regiões de saúde, apresentados também na Tabela 2.

Tabela 1. Taxas regionais de incidência de câncer nos períodos estudados.

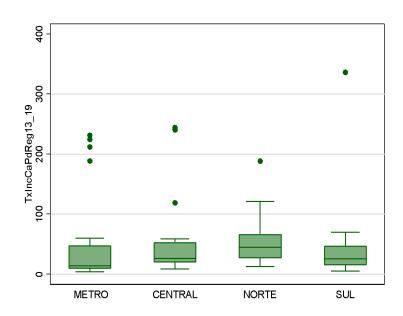
Região de Saúde	2013-2019 Taxa e Dp	2006 -2012 Taxa e Dp	Diferença	p-valor	IC 95%
Norte	57,69 (46,96)	7,26 (5,76)	50,42	0,0003	(26,3 5 ; 74,5)
Central	56,40 (72,03)	8,50 (14,14)	47,84	0,0016	(18,4 8 ; 15,53)
Metropolitana	55,71 (82,54)	11,19 (18,95)	44,56	0,0032	(2,32 ; 20,06)
Sul	40,75 (62,74)	6,75 (10,79)	33,95	0,0014	(12,9 1 ; 55,01)

Por fim, a análise descritiva dos dados mostrou que as taxas de incidência de câncer segundo as regiões de saúde para ambos os períodos estudados (2006-2012 e 2013-2019), apresentaram valores discrepantes (*outliers*), apontando para a necessidade de utilização de modelagens estatísticas robustas que levassem em consideração os valores com efeito de alavancagem. Para o período de 2006-2012 foram identificados 08 municípios com valores considerados discrepantes, sendo eles: São Mateus, Colatina, Vila Velha, Cariacica, Serra, Linhares, Cachoeiro de Itapemirim e Vitória (**Figura 1**).

Tabela 2. Taxas médias de incidência de câncer segundo Região de Saúde e análise intra-região-período.


Região de Saúde	Taxa Incidência de Câncer*	Dp	Bonferroni	Diferença	t	IC	95%
		1	Período 2006 -2012				
Norte	7,26	3,62	Central x Norte	1,24	0,26	(-11,8431	; 14,32096)
Central	8,50	3,19	Metrop. x Norte	3,93	0,83	(-8,86071	; 16,72458)
Metropolitana	11,20	3,03	Sul x Norte	-0,51	-0,11	(-12,6803	; 11,65903)
Sul	6,75	2,66	Metrop. x Central	2,69	0,61	(-9,23426	; 14,62025)
			Sul x Central	-1,75	-0,42	(-13,0061	; 9,506897)
			Sul x Metrop.	-4,44	-1,1	(-15,3615	; 6,476262)
		P	eríodo de 2013 -2019				
Norte	57,69	18,24	Central x Norte	-1,34	-0,06	-67,29	64,60
Central	56,34	16,08	Metrop. x Norte	-1,93	-0,08	-66,42	62,54
Metropolitana	55,75	15,26	Sul x Norte	-16,97	-0,75	-78,32	44,36
Sul	40,71	13,38	Metrop. x Central	-0,59	-0,03	-60,71	59,52
			Sul x Central	-15,63	-0,75	-72,37	41,1
			Sul x Metrop.	-15,04	-0,74	-70,08	39,99

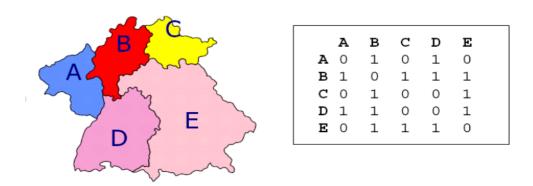
Nota: 1) *Taxas médias padronizadas pelas populações das regiões de Saúde.


2) Metrop.: Região Metropolitana.

Para o período de 2013-2019 dez municípios apresentaram comportamento discrepante, sendo eles: Cachoeiro de Itapemirim, Colatina, Linhares, Vila Velha, Serra, Vitória, Cariacica, São Mateus, Nova Venécia e Aracruz (**Figura 2**). Tais achados influenciam as abordagens na relação de associação entre a exposição e o desfecho. Para viabilizar as análises empregou-se o método de Prais-Winsten com variância robusta.

Figura 1. Taxa de incidência de câncer no estado do ES segundo região de Saúde para o período de 2006-2012.

Figura 2. Taxa de incidência de câncer no estado do ES segundo região de Saúde para o período de 2013-2019.



4.1 DEPENDÊNCIA ESPACIAL

A estatística espacial consiste no estudo da caracterização e modelagem de variáveis aleatórias que apresentam uma estrutura espacial. Diferentes tipos de dados espaciais implicam em diferentes técnicas de análise estatística (AZEVEDO e SILVA et al, 2011).

Neste trabalho foram considerados dados de área, como notificações de câncer e número de unidades agrícolas que utilizam agrotóxico por município. A dependência espacial ocorre quando o valor de uma variável para uma região assemelha-se mais com os valores de seus vizinhos do que com os valores para as demais regiões (DUTRA *et al*, 2023). O conceito de vizinhança adotado neste trabalho é formulado com base em fronteiras. A **Figura 3** apresenta um exemplo de construção de uma matriz de vizinhanças para as áreas A, B, C, D e E.

Figura 3. Representação esquemática da matriz de correlação de dados por área.

Fonte: Áreas e Matriz de Proximidade Espacial (Câmara et al, 1996).

A ferramenta mais utilizada para quantificar a dependência espacial de uma variável é o índice de autocorrelação espacial de Moran. O cálculo deste índice utiliza a matriz de vizinhança apresentada (Câmara *et al*, 1996). Os resultados do índice Moran

para as variáveis da taxa de incidência municipal de câncer por 100 mil habitantes de 2006 a 2019 e a razão *per capita* (RzPecta) municipal de unidades agrícolas que usam agrotóxicos de 2006 a 2019 estão apresentadas na **Tabela 3.**

Tabela 3. Índice de correlação espacial das variáveis de desfecho e exposição.

Variável	Índice de Moran	p-valor		
Câncer	0,478	< 0,001		
RzPecta	0,320	< 0,001		

Afim de verificar a possível associação entre estas variáveis foi aplicada uma análise de regressão. Considerando a significância estatística encontrada (Moran <0,001), procedeu-se à regressão espacial com propósito de obter melhores critérios de AIKE e o Critério de informação Bayesiano (BIC). Foram analisados quatro modelos, a saber: Poisson, Poisson Espacial, Binomial Negativa e Binomial Negativa Espacial.

Para a escolha do "melhor" modelo foi considerada a medida WAIC, conhecido como critério de informação de Watanabe-Akaike e que estão representados na **Tabela 4**, onde verifica-se que o modelo com menor WAIC trata-se do modelo de Poisson Espacial.

Tabela 4. Desempenho dos modelos de regressão segundo o critério WAIC.

Modelo \ Abordagem	Não-Espacial	Espacial
Poisson	1870,73	712,79
Binomial Negativa	879,18	879,18

Na regressão realizada utilizando o modelo de Poisson com dependência espacial estabeleceu que a RzPecta entre o número de unidades agrícolas e a população municipal está relacionada a taxa de incidência municipal de câncer no estado do ES de forma estatisticamente significativa, com $\beta = 0,000022$ e p-valor = 0,0145. A equação de

regressão do modelo Poisson Espacial aponta para os seguintes parâmetros demonstrados na **Tabela 5**.

Tabela 5. Estimativas do modelo Poisson Espacial para a variável câncer.

Parâmetro	Estimativa	LI 95%	LS 95%	p-valor
Intercepto	-7,1350	-7.1909	-7.0764	< 0,001
RzPecta	0,000022	0.000004	0.000040	0,0145

Analisando os valores encontrados, pudemos verificar que, apesar de baixo, o valor do coeficiente de regressão para a variável RzPecta exerce uma relação positiva e estatisticamente significativa em relação a taxa de incidência municipal de câncer. O que aponta na direção de que: quanto maior a razão *per capita* municipal de unidades agrícolas que usam agrotóxicos, maior será a taxa de incidência municipal de câncer por 100 mil habitantes. De modo mais preciso, estima-se que com o aumento de uma unidade na variável RzPecta é esperado um acréscimo de 0,0022% na incidência de câncer. Esta relação é demonstrada na seguinte equação de regressão:

Log (E(ocorrência mun. de câncer)) = -7,135 + log (pop. Mun.) + 0,000022
 (RzPecta)

Que por sua vez é equivalente à equação:

• Log (E(incidência municipal de câncer)) = -7,135 + 0,000022 (RzPecta)

Foram estimados os testes de autocorrelação espacial: Índice de Moran Global (IMG) e Índice de Moran Local (IML) para as taxas de incidência municipais de câncer cumulativamente para os períodos de 2006-2012 e 2013-2019. Para o IMG tomou-se por

base a construção da matriz inversa da distância considerando-se os parâmetros de variação das bandas 0 < d <= 5, com a média de 1,2; Parâmetro de atrito: 1; Distância mínima: 0,0; Distância do 1º quartil: 0,7; Distância mediana: 1,2; Distância do 3º quartil: 1,8 Distância máxima: 3,9; Maior distância mínima: 0,80; Menor distância máxima: 2,04. Os valores encontrados para o IMG foram para o período de 2006-2012 foram: I = 0,013 +- 0,020 e p-valor de 0.103. Para o período de 2013-2019, os valores encontrados foram: I = 0,007 +/- 0,021 e com p-valor de 0,163.

Os testes de autocorrelação espacial do IML para os períodos de 2006-2012 e 2013-2019 teve como base a matriz binária considerando-se os parâmetros de variação das bandas 0 < d <= 1, Distância mediana: 1,2; Parâmetro de atrito: 1; Distância mínima: 0,0; Distância do 1º quartil: 0,7; Distância mediana: 1,2; Distância do 3º quartil: 1,8 Distância máxima:3,9; Maior distância mínima: 0,80. Os valores encontrados para o IML no período de 2006-2012 foram de: I = 0,033 +/- 0,032 e p-valor de 0,074. Para o período de 2013-2019 os valores de IML encontrados foram: I = 0,028 +/- 0.032 e p-valor 0,105.

Com base nos resultados, não podemos rejeitar a hipótese nula (H₀), ou seja, de que não há autocorrelação espacial em ambos os períodos estudados. Tais achados permitem a condução das análises de determinação da associação entre as taxas de incidência de câncer e a RzPecta sem necessidade de considerar a dependência espacial como determinante no processo de incidência do câncer.

4.2 DEPENDÊNCIA TEMPORAL

Segundo Morettin (2006), "o *conjunto de observações ordenadas no tempo*" constitui-se numa série temporal cujos componentes de tendência e sazonalidade devem ser analisados para compreensão do comportamento temporal dos fenômenos

epidemiológicos. Como os dados não estão organizados de forma mensal/semestralmente, o componente da sazonalidade perde importância nas séries anuais, passando o componente da tendência a assumir o papel central nas análises.

4.3 ASSOCIAÇÃO ENTRE CÂNCER E AGROTÓXICOS

A fim de verificar a possível associação entre a incidência de câncer e o "uso de agrotóxicos" procedeu-se a regressão múltipla considerando as variáveis de:

- 1- Taxas de incidência municipais de câncer x 100.000 habitantes (desfecho)
 (UndAgTx);
- 2- Número de unidades agrícolas (NºUndAg);
- 3- Número de unidades agrícolas que usam agrotóxico (NºUAgTx);
- 4- Percentual de unidades agrícolas que usam agrotóxicos (PercUndAgtx);
- 5- Razão *per capita* de unidades agrícolas que usam agrotóxicos (RzPecta).

Preliminarmente, estabeleceu-se uma matriz de correlação de forma a identificar possíveis comportamentos de multicolinearidade e assim evitar o fenômeno de super dispersão. Os resultados da matriz de correlação entre a taxa de incidência de câncer e o nº de unidades agrícolas foi de 0,0416 e, entre o nº de unidades agrícolas que usam agrotóxico foi de 0,0545. O percentual de unidades agrícolas que usam agrotóxicos foi de -0,048. A correlação encontrada entre a taxa de incidência de câncer e a RzPecta do nº de unidades agrícolas que usam agrotóxicos e a população dos municípios foram encontrados valores negativos (-0,2301), demonstrando uma correlação negativa entre a condição de exposição e o desfecho. Segue abaixo a matriz de correlação:

N°UndAg | 0.0416 1.0000

N°UAgTx | 0.0545 0.9101 1.0000

PercUndAgtx | -0.0480 | 0.3940 | 0.6502 | 0.9982 | 0.6567 | 1.0000

Frente aos resultados obtidos procedeu-se à investigação das condições de dependência temporal-espacial. A regressão linear robusta de Prais-Winsten empregada estabeleceu que a RzPecta das unidades agrícolas está estatisticamente associada à taxa de incidência de câncer municipal, sendo F (1,1096) = 4,50 e p-valor = 0,0013. O modelo de regressão estimado pode ser observado na equação abaixo:

• Tx de incidência de câncer = $-4,214032 + 0,0057(N^{\circ}UndAg) - 0,0143891$ ($N^{\circ}UAgTx$) + 0,0380866 (PercUndAgtx) + 0,7814081 (RzPecta).

As estimativas demonstraram que, dadas as demais variáveis constantes, o aumento de uma unidade na variável RzPecta (em média), têm-se um acréscimo de 0,7814 unidades na incidência de câncer. A dependência temporal da distribuição municipal das taxas de incidência de câncer foi testada para o período estudado mediante as provas de autocorrelação estatística com o teste de Durbin-Watson, que testa a hipótese nula de que os resíduos de uma regressão de mínimos quadrados não são autocorrelação.

Os valores de referência para a regressão empregada com n = 1.014 e quatro variáveis independentes remetem ao limite inferior de Dl = 1,728 e o limite superior DU:

1,809. O valor D encontrado, ou seja, 0,14 é menor do que o limite inferior que nos permite rejeitar a hipótese nula de que os resíduos de uma regressão de mínimos quadrados comum não são auto correlacionados. Tais achados condicionam a consideração da autocorrelação temporal nas análises relacionadas à evolução das taxas de incidência de câncer no período de 2006-2019.

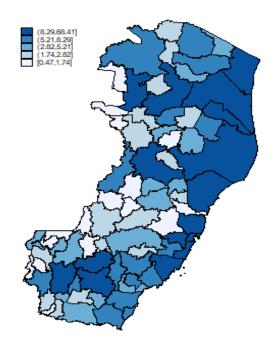
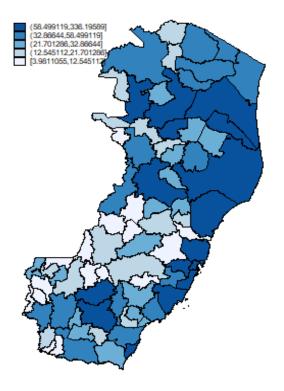

As estimativas encontradas estão disponíveis na **Tabela 6**, com destaque para o achado de que o N°UndAg apresentou associação com a taxa de incidência de câncer, obtendo-se $\beta = 0,005$ e p-valor = 0,008. Todavia, a RzPecta das unidades agrícolas sob a população municipal apresentou $\beta = 0,781$, portanto, não foi considerada estatisticamente significante, p-valor = 0,356.

Tabela 6. Regressão de Prais-Winsten das taxas de incidência de câncer padronizadas pelas regiões de saúde e o número de unidades agrícolas e percentual de unidades agrícolas.

Parâmetro	Estimativa	LI 95%	LS 95%	Valor-p
Intercepto	-4,2140	-9,2032	0,7751	0,098
N°UndAg	0,0058	0,0015	0,0100	0,008
N°UAgTx	-0,0144	-0,0259	-0,0029	0,014
PercUndAgtx	0,0381	-0,0597	0,1358	0,445
RzPecta	0,7814	-0,8782	2,4410	0,356

A visualização coroplética demonstra o predomínio das taxas elevadas junto aos municípios do litoral a partir da Região Metropolitana, passando pela Região Central e alcançando a Região Norte. Destaca-se, ainda, a possível existência de um "cluster" na Região Sul, composta pelos municípios de Alegre, Cachoeiro e Castelo, conforme demonstrado na **Figura 4**.


Figura 4. Taxa Padronizada de Incidência cumulativa de câncer no estado do ES para o período de 2006-2012.

O "padrão" descrito permanece para o período 2013-2019 (**Figura 5**), com a particularidade do aumento das taxas de incidência para todos os municípios estudados, tendo uma média de 1.507,8; Dp +/- 570,56. A taxa de crescimento com menor valor foi encontrada no município de Governador Lindenberg, com 421,20 e o maior valor encontrado foi no município de Vitória, com crescimento de 3228,04.

Outro componente a ser considerado, diz respeito a presença da *autocorrelação temporal*, que indica quão relacionado o valor encontrado em um ponto da série se relaciona (depende) com os valores das demais observações. Condição que deve ser considerada nas análises regressivas de determinação caso a determinação da temporalidade seja significante para o período estudado.

Figura 5. Taxa padronizada de incidência cumulativa de câncer no estado do ES para o período de 2013-2019.

A plotagem da linha do tempo das taxas de incidência entre os diversos municípios do estado do ES (**Figura 5**), demonstrou um comportamento estacionário entre a grande maioria dos municípios, o que favorece a exclusão da autodeterminação temporal das estimativas associativas entre o uso de agrotóxicos e a taxa de incidência de câncer no estado do ES. Porém, os testes de Prais-Winsten para o comportamento temporal da taxa de incidência de câncer em 53 municípios (68%) apresentaram-se positivamente associada à dependência temporal, dos quais 28 (52%) apresentaram significância estatística para os testes de Variação Percentual Anual (APC).

5. DISCUSSÃO

Na análise espacial da taxa de incidência municipal de câncer observou-se que a taxa de um município é correlacionada a dos municípios vizinhos. O mesmo ocorreu com a razão *per capita* municipal de unidades agrícolas que usam agrotóxicos. A partir destes resultados, foi construído um modelo de regressão Poisson Espacial no qual verificou-se uma relação positiva e estatisticamente significativa entre estas variáveis, sugerindo que o aumento na razão *per capita* municipal de unidades agrícolas que usam agrotóxicos implica em um aumento na taxa de incidência municipal de câncer.

Na análise temporal, ao considerar o modelo Prais-Winsten, observou-se uma associação positiva entre a variável desfecho, taxa padronizada de incidência de câncer, e as variáveis de exposição: número de unidades agrícolas e razão *per capita* municipal de unidades agrícolas que usam agrotóxicos, sendo esta última estatisticamente não-significativa. A análise temporal indica ainda que os dados apresentam autocorrelação positiva e estatisticamente significativa.

Em um estudo realizado em pacientes com câncer diagnosticados entre 2005 e 2016, que foram tratados no Centro de Alta Complexidade em Oncologia (CACON), localizado no Hospital de Caridade de Ijuí, no Rio Grande do Sul – Brasil, os autores encontraram que os coeficientes de morbidade por câncer aumentaram com a idade e foram significativamente maiores entre as pessoas que residiam em áreas rurais, quando comparadas com as residentes das áreas urbanas (p<0,0001). Em ambas as áreas, os homens apresentaram coeficientes de morbidade por câncer significativamente maiores do que as mulheres. Tal estudo sugere que a maior incidência de câncer está relacionada a fatores da vida rural, como a exposição à

agrotóxicos, visto que a área estudada é conhecida por sua economia baseada na agricultura e no elevado uso de agrotóxicos (PLUTH *et al*, 2020).

Outro estudo realizado em 2013, no interior do estado do Mato Grosso, analisou a associação entre o uso agrícola de agrotóxico e a morbimortalidade por câncer em menores de 20 anos, os autores observaram que a média de uso de agrotóxicos nos municípios apresentou associação estatisticamente significante tanto para a morbidade (p-valor 0,021), como para a mortalidade (p-valor 0,005) por câncer infantojuvenil, com intervalo de confiança de 95%. Os resultados indicam que a exposição aos agrotóxicos está associada à morbimortalidade por câncer na população infantojuvenil do local estudado (CURVO *et al*, 2021).

Considerando-se as evidências destacadas na literatura especializada (NOGUEIRA *et al*, 2020), sugeriram a necessidade de se complementar a avaliação da saúde dos trabalhadores expostos aos agrotóxicos utilizando biomarcadores de efeito de genotoxicidade e citotoxicidade, afim de promover e ampliar a vigilância da exposição e das intoxicações crônicas e suas prevenções.

Outra indagação que se faz notória diz respeito à necessidade do monitoramento da utilização dessas substâncias no que tange a quantidade, frequência de utilização e o tipo de agrotóxico utilizado. Neste sentido, destaca-se a necessidade de inferir a partir do zoneamento da atividade agrícola, respectivamente identificando: tipos de plantações, áreas utilizadas, pontos de comercialização dos agroquímicos, pontos de fiscalização e orientação quanto ao uso e casos disponíveis. Esse questionamento pode também se estender para a fiscalização do ambiente de trabalho rural, como: aspectos previdenciários onde se podem inferir os afastamentos e aposentadorias por invalidez em trabalhadores do setor que tenham por causa intoxicações por agrotóxicos (NOGUEIRA et al, 2020).

Segundo Maroni *et al* (2006), apesar da importância econômica e social da agricultura, a proteção à saúde da força de trabalho agrícola foi negligenciada por muitos anos, causando uma forte ameaça em termos de doenças evitáveis, sofrimento humano e perdas econômicas. Particularmente nos países em desenvolvimento, onde o trabalho agrícola é um dos trabalhos predominantes, um modelo sustentável de desenvolvimento exige mais atenção aos riscos ocupacionais na agricultura. A experiência de muitos países mostrou que a prevenção do risco à saúde causada por pesticidas é tecnicamente viável e economicamente gratificante para os indivíduos e para toda a comunidade. Uma avaliação de risco adequada e gerenciamento do uso de pesticidas é um componente essencial deste preventivo.

A limitação do estudo diz respeito à escassez de informações sobre a quantidade de agrotóxicos utilizados nas unidades agrícolas do estado do ES. Além disso, para os dados disponíveis, como o número de unidades que usam agrotóxicos, não são apresentadas informações anuais, mas sim, em intervalos de tempo como 2006-2012 e 2013-2019.

6. CONCLUSÕES

Em que pese a não rejeição da hipótese nula encontrada no estudo, destaca-se a importância da modernização e atualização dos mecanismos de vigilância ambiental envolvidos no presente trabalho, bem como, a abordagem epidemiológica ambiental para a determinação causalista da exposição ao uso de agrotóxicos e o desenvolvimento de câncer, destacando-se a necessidade do monitoramento e do controle mais efetivos de substâncias que potencialmente produzem danos biológicos ao meio biótico e antrópico.

Ainda nessa direção, pode-se observar o aumento de estudos e pesquisas que tratam das consequências e efeitos dos agrotóxicos na saúde humana, que entre outras observações podemos destacar a necessidade de realização de estudos de campo tipo série de casos e/ou casos-controle que possibilitem relacionar de forma mais precisa as relações de causa/efeito existentes na relação do uso de agrotóxicos e no desenvolvimento de câncer, em especial, nos trabalhadores rurais.

Por fim, os pesquisadores envolvidos no presente trabalho, em nome do setor saúde se solidarizam com todos os portadores desse grande grupo de doença que pode afetar qualquer parte do corpo trazendo sofrimento às populações e ceifando anos de vida dos trabalhadores do campo.

7. Referências Bibliográficas

- 1. AZEVEDO E SILVA G *et al.* Tendência da mortalidade por câncer nas capitais e interior do Brasil entre 1980 e 2006. Rev Saúde Pública; 45(6): 1009-18. 2011.
- 2. BRASIL. Lei nº 7.802, de 11 de julho de 1989. Dispõe sobre a pesquisa, a produção, a embalagem e rotulagem, o transporte, o armazenamento, a comercialização, a propaganda comercial, a utilização, a importação, a exportação, o destino final dos resíduos e embalagens, o registro, a classificação, o controle, a inspeção e a fiscalização de agrotóxicos, seus componentes e afins, e dá outras providências. In: Legislação federal de agrotóxicos e afins. Brasília (DF): Ministério da Agricultura e do Abastecimento; p. 7-13. 1998.
- 3. BRASIL, MINISTÉRIO DA SAÚDE (MS). Relatório Nacional de Vigilância em Saúde de Populações Expostas a Agrotóxicos. 2018.
- 4. CÂMARA G *et al.* Anatomia de Sistemas de Informações Geográficas. Campinas. Unicamp. 1996.
- 5. CARNEIRO FF (Org.) Dossiê ABRASCO: um alerta sobre os impactos dos agrotóxicos na saúde / Organização de Fernando Ferreira Carneiro, Lia Giraldo da Silva Augusto, Raquel Maria Rigotto, Karen Friedrich e André Campos Búrigo. Rio de Janeiro: EPSJV; São Paulo: Expressão Popular. 624 p. 2015.
- CURVO HRM. Morbimortalidade por câncer infantojuvenil associada ao uso agrícola de agrotóxicos no Estado de Mato Grosso, Brasil. Cad. saúde colet. Rio de Janeiro, 21 (1): 10-7. 2013.
- 7. DE JESUS PORTO M *et al.* Avaliação toxicológica: alterações em biomarcadores desencadeadas por exposição de trabalhadores rurais a agrotóxicos. Research, Society and Development, v. 10, n. 1, p. e26510111859-e26510111859, 2021.
- 8. DE MIRANDA NOBLAT AK *et al.* Impacto dos agrotóxicos na alimentação: Uma revisão de literatura. Research, Society and Development, v. 10, n. 6, p. e36110614504-e36110614504. 2021.
- 9. DUTRA LS *et al.* Uso de agrotóxicos e mortalidade por câncer em regiões de monoculturas. Saúde em Debate, v. 44, p. 1018-1035, 2021.
- 10. DUTRA VGP et al. Carga de câncer relacionado ao trabalho no Brasil e unidades da federação, 1990–2019. Revista Brasileira de Epidemiologia .2023.

- 11. FARIA NMX; FASSA AG; FACCHINI LA. Intoxicação por agrotóxicos no Brasil: os sistemas oficiais de informação e desafios para realização de estudos epidemiológicos. Ciência & Saúde Coletiva, v. 12, p. 25-38, 2007.
- 12. FILHO GB. Distúrbios do Crescimento e da Diferenciação Celular. In: FILHO GB, PEREIRA FEL, GUIMARÃES RC. Bogliolo Patologia. 7ª. ed. Rio de Janeiro: Guanabara Koogan; p. 175-236, 2006.
- 13. IBGE Instituto Brasileiro de Geografía e Estatística. Censo 2000. Rio de Janeiro: IBGE, 2000.
- 14. INSTITUTO NACIONAL DE CÂNCER JOSÉ ALENCAR GOMES DA SILVA (INCA). Estimativa 2020: incidência de câncer no Brasil / Instituto Nacional de Câncer José Alencar Gomes da Silva. Rio de Janeiro: INCA, 120 p. 2019.
- 15. JOBIM PC; NUNES LN; GIUGLIANI R; CRUZ IM. Existe uma associação entre mortalidade por câncer e uso de agrotóxicos? Uma contribuição ao debate. Ciência & Saúde Coletiva, v.15, n.1, p.277-88, 2010.
- 16. LOPES CVAA *et al*. Agrotóxicos e seus impactos na saúde humana e ambiental: uma revisão sistemática. Saúde em Debate [online]. V. 42, n. 117.2018.
- 17. MARONI M; FANETTI AC; METRUCCIO F. Risk assessment and management of occupational exposure to pesticides in agriculture. Med Lav. Mar-Apr;97(2):430-7. 2006.
- 18. NEVES PDM *et al.* Intoxicação por agrotóxicos agrícolas no estado de Goiás, Brasil, de 2005-2015: análise dos registros nos sistemas oficiais de informação. Ciência & Saúde Coletiva, v. 25, n. 7, p. 2743-2754. 2020.
- 19. NOGUEIRA FAM *et al.* Exposição a agrotóxicos e agravos à saúde em trabalhadores agrícolas: o que revela a literatura? Revista Brasileira de Saúde Ocupacional [online]. V. 45. 2020.
- 20. PLUTH TL *et al*. Perfil epidemiológico de pacientes com câncer de uma área com alto uso de agrotóxicos. Saúde debate 44 (127) Oct-Dec 2020.
- 21. SECRETARIA DE ESTADO DA SAÚDE DO ESPÍRITO SANTO (SESA). Plano diretor de regionalização. Vitória: Secretaria de Estado da Saúde do Espírito Santo; 2011.
- 22. TOLOI CMC & MORETTIN PA. Análise de Séries Temporais; selo: Blucher | 2006 2ª edicão.

ANEXO I Plano Diretor de Regionalização

Fonte: Plano Diretor de Regionalização – PDR – ES, 2011.

Tabela Suplementar S1: Taxa de incidência municipal de câncer padronizada, casos municipais estimados pelo TABNET-SESA-ES 2006-2012.

i	cod_m						Ca_20	Ca_20	Ca_20	Ca_20	Ca_20	Ca_20	TT_Ca_06_	PopPdR	TxIncCaPdReg06
d	un _	regsaude	x_coor	y_coor	Nm_Munic	Ca_2006	07	08	09	10	11	12	12	eg	_12
1	320010	METRO	-41,1265	-20,8943	AFONSO CLÁUDIO ÁGUA DOCE DO	8	10	2	5	5	5	10	45	1954390	2,30
2	320013	CENTRAL	-40,7495	-18,9703	NORTE	2	1	0	1	2	5	4	15	576967	2,60
3	320016	NORTE	-40,9968	-18,5166	ÁGUIA BRANCA	0	3	0	1	1	0	1	6	390413	1,54
4	320020	SUL	-41,5149	-20,7195	ALEGRE	11	21	6	5	4	11	7	65	633933	10,25
5	320030	SUL	-40,827	-20,5639	ALFREDO CHAVES	8	7	5	3	0	7	5	35	633933	5,52
6	320035	CENTRAL	-40,9871	-19,221	ALTO RIO NOVO	0	1	0	0	0	1	1	3	576967	0,52
7	320040	SUL	-40,6862	-20,7187	ANCHIETA	13	17	2	3	2	7	7	51	633933	8,05
8	320050	SUL	-41,5542	-21,7214	APIACÁ	3	7	2	1	0	2	2	17	633933	2,68
9	320060	CENTRAL	-40,1762	-19,7656	ARACRUZ	17	20	7	7	10	7	16	84	576967	14,56
10	320070	SUL	-41,184	-20,9622	ATILIO VIVACQUA	6	3	0	3	1	1	4	18	633933	2,84
11	320080	CENTRAL	-40,9838	-19,5724	BAIXO GUANDU	6	7	0	3	5	5	14	40	576967	6,93
12	320090	NORTE	-40,8312	-18,6661	BARRA DE SÃO FRANCISCO	5	8	2	5	7	3	4	34	390413	8,71
13	320100	NORTE	-40,3291	-18,4847	BOA ESPERANCA	6	3	0	3	1	0	2	15	390413	3,84
14	320110	SUL	-41,6338	-21,8446	BOM JESUS DO NORTE	0	3	1	2	3	1	0	10	633933	1,58
15	320115	METRO	-41,297	-20,1254	BREJETUBA	2	4	1	0	2	1	3	13	1954390	0,67
16	320120	SUL	-41,191	-20,7661	CACHOEIRO DE ITAPEMIRIM	45	81	44	49	49	54	43	365	633933	57,58
17	320130	METRO	-40,442	-20,2907	CARIACICA	141	168	96	82	72	86	110	755	1954390	38,63
18	320140	SUL	-41,204	-20,5517	CASTELO	24	25	6	7	7	5	12	86	633933	13,57
19	320150	CENTRAL	-40,6568	-19,4882	COLATINA	18	64	20	20	12	7	37	178	576967	30,85
20	320160	NORTE	-39,8334	-18,4451	CONCEIÇÃO DA BARRA	11	20	3	3	5	4	4	50	390413	12,81
21	320170	METRO	-41,2659	-20,3709	CONCEICAO DO CASTELO	7	0	1	1	3	0	1	13	1954390	0,67
22	320180	SUL	-41,7244	-20,5868	DIVINO DE SAO LOURENCO	0	2	0	0	3	0	0	5	633933	0,79
23	320190	METRO	-40,849	-20,3078	DOMINGOS MARTINS	8	17	3	6	12	13	10	69	1954390	3,53
24	320200	SUL	-41,8121	-20,635	DORES DO RIO PRETO	1	1	1	0	0	0	0	3	633933	0,47
25		NORTE	-40,8077	-18,2656	ECOPORANGA	3	10	2	5	1	6	2	29	390413	7,43
26	320220	METRO	-40,3568	-19,9683	FUNDÃO	7	9	3	2	4	1	8	34	1954390	1,74
27	320225	CENTRAL	-40,5	-19,2054	GOV. LINDENBERG	0	1	3	0	1	0	1	6	576967	1,04

28	320230	SUL	-41,7052	-20,7634	GUACUI	7	12	9	4	2	5	6	45	633933	7,10
29	320240	METRO	-40,5462	-20,5851	GUARAPARI	17	43	18	15	27	15	27	162	1954390	8,29
30	320245	METRO	-41,5502	-20,2507	IBATIBA	5	8	0	1	1	3	4	22	1954390	1,13
31	320250	CENTRAL	-40,4179	-19,8348	IBIRACU	2	3	1	2	1	2	1	12	576967	2,08
32	320255	SUL	-41,6926	-20,486	IBITIRAMA	6	1	1	0	2	1	3	14	633933	2,21
33	320260	SUL	-40,8574	-20,7549	ICONHA	6	6	5	5	4	3	7	36	633933	5,68
34	320265	SUL	-41,6368	-20,3311	IRUPI	4	2	0	0	0	0	1	7	633933	1,10
35	320270	METRO	-40,8646	-19,7286	ITAGUACU	3	6	0	4	4	4	12	33	1954390	1,69
36	320280	SUL	-40,9446	-20,9658	ITAPEMIRIM	6	10	8	7	1	2	5	39	633933	6,15
37	320290	METRO	-40,8889	-19,95	ITARANA	1	5	1	3	0	1	3	14	1954390	0,72
38	320300	SUL	-41,6565	-20,3485	IÚNA	4	10	1	3	2	2	6	28	633933	4,42
39	320305	NORTE	-40,417	-18,9497	JAGUARÉ	7	8	2	3	3	2	8	33	390413	8,45
40	320310	SUL	-41,3922	-20,8046	JERÔNIMO MONTEIRO	3	5	3	6	12	8	7	44	633933	6,94
41	320313	CENTRAL	-40,437	-19,7154	JOÃO NEIVA	3	4	1	4	1	4	1	18	576967	3,12
42	320316	METRO	-41,5773	-19,8726	LARANJA DA TERRA	3	4	3	1	2	5	1	19	1954390	0,97
43	320320	CENTRAL	-40,2938	-19,3827	LINHARES	66	102	43	30	32	33	26	332	576967	57,54
44	320330	CENTRAL	-41,7168	-18,8764	MANTENÓPOLIS	1	2	0	1	0	1	2	7	576967	1,21
45	320332	SUL	-40,8936	-21,1001	MARATAÍZES	3	14	4	4	8	5	4	42	633933	6,63
46	320334	METRO	-40,7739	-20,4313	MARECHAL FLORIANO	2	15	6	6	5	2	9	45	1954390	2,30
47	320335	CENTRAL	-40,5207	-19,4297	MARILÂNDIA	1	2	3	3	1	3	3	16	576967	2,77
48	320340	SUL	-41,3768	-21,8862	MIMOSO DO SUL	8	6	4	2	1	5	4	30	633933	4,73
49	320350	NORTE	-40,2752	-18,1389	MONTANHA	4	12	0	2	0	4	3	25	390413	6,40
50	320360	NORTE	-40,5125		MUCURICI	1	0	0	0	0	3	3	7	390413	1,79
51	320370	SUL	-41,435	-20,4268	MUNIZ FREIRE	6	2	1	3	5	5	5	27	633933	4,26
52	320380	SUL	-41,3439	-20,9383	•	2	0	2	2	2	3	1	12	633933	1,89
53	320390	NORTE	-40,5225	-18,6984	NOVA VENÉCIA	12	14	3	4	5	2	13	53	390413	13,58
54	320400	CENTRAL	-40,8178	ĺ	PANCAS	4	5	1	2	3	1	0	16	576967	2,77
55	320405	NORTE	-40,3716	,	PEDRO CANÁRIO	4	2	2	0	2	3	5	18	390413	4,61
56	320410	NORTE	-40,1982	,	PINHEIROS	5	2	1	1	2	1	9	21	390413	5,38
57	320420	SUL	-40,7725	-20,8378	PIÚMA	1	4	2	4	5	7	2	25	633933	3,94

58	320425	NORTE	-40,5143	-18,2508	PONTO BELO PRESIDENTE	0	4	2	0	0	1	1	8	390413	2,05
59	320430	SUL	-41,721	-21,1407	KENNEDY	1	10	2	1	12	5	7	38	633933	5,99
60	320435	CENTRAL	-40,3082	-19,2305	RIO BANANAL	7	7	4	2	1	7	1	29	576967	5,03
61	320440	SUL	-40,9188	-20,8181	RIO NOVO DO SUL	3	6	6	2	5	1	2	25	633933	3,94
62	320450	METRO	-40,5393	-20,1232	SANTA LEOPOLDINA SANTA MARIA DE	5	3	2	3	2	3	4	22	1954390	1,13
63	320455	METRO	-40,8064	-20,8511	JETIBÁ	7	12	7	10	3	6	8	53	1954390	2,71
64	320460	METRO	-40,6348	-19,8792	SANTA TERESA SÃO DOMINGOS DO	6	20	3	3	4	7	13	56	1954390	2,87
65	320465	CENTRAL	-40,5667	-19,1225	NORTE	1	2	1	3	1	3	7	18	576967	3,12
66	320470	CENTRAL	-40,5084	-18,9527	SÃO GABRIEL DA PALHA SAO JOSE DO	6	16	4	4	4	2	8	44	576967	7,63
67	320480	SUL	-41,6557	-20,9828	CALCADO	2	2	1	2	3	2	1	13	633933	2,05
68	320490	NORTE	-40,2028	-18,7496	SÃO MATEUS SÃO ROQUE DO	8	16	12	9	9	15	18	87	390413	22,28
69	320495	CENTRAL	-40,6795	-19,7197	CANAÃ	4	4	1	4	0	3	2	18	576967	3,12
70	320500	METRO	-40,3016	-20,1281	SERRA	137	179	77	83	78	108	121	783	1954390	40,06
71	320501	CENTRAL	-40,1466	-19,7261	SOORETAMA	8	5	3	2	3	4	6	31	576967	5,37
72	320503	SUL	-41,491	-20,6471	VARGEM ALTA VENDA Nva	2	10	7	5	2	5	2	33	633933	5,21
73	320506	METRO	-41,1402	-20,3704	IMIGRANTE	4	11	2	5	4	6	8	40	1954390	2,05
74	320510	METRO	-40,5127	-20,4011	VIANA	26	38	15	9	10	12	24	134	1954390	6,86
75	320515	NORTE	-40,6271	-18,6142	VILA PAVÃO	1	3	1	2	0	1	3	11	390413	2,82
76	320517	CENTRAL	-40,3296	-18,9666	VILA VALÉRIO	4	4	0	2	0	1	5	16	576967	2,77
77	320520	METRO	-40,3783	-20,4341	VILA VELHA	126	157	100	66	54	106	118	727	1954390	37,20
78	320530	METRO	-39,8797	-20,304	VITORIA	182	295	211	209	147	163	130	1337	1954390	68,41

Tabela Suplementar S2: Taxa de incidência municipal de câncer padronizada, casos municipais estimados pelo TABNET-SESA-ES 2013-2019

id	cod_m u	regsaude	x_coor	y_coor	Nm_Munic	ca_13	ca_14	ca_15	ca_16	ca_17	ca_18	ca_19	CaTT_13_ 19	popPdR eg	TxIncCaPdReg13 _19
1	320010	METRO	-41,1265	-20,8943	AFONSO CLAUDIO	36	30	45	31	39	62	125	368	2160204	17,04
2	320013	CENTRA L	-40,7495	-18,9703	ÁGUA DOCE DO NORTE	9	16	14	14	15	26	21	115	635907	18,08
3	320016	NORTE	-40,9968	-18,5166	AGUIA BRANCA	3	10	10	11	9	13	27	83	418474	19,83
4	320020	SUL	-41,5149	-20,7195	ALEGRE	40	37	38	47	45	50	60	317	664791	47,68
5	320030	SUL CENTRA	-40,827	-20,5639	ALFREDO CHAVES	13	13	18	23	16	30	54	167	664791	25,12
6	320035	L	-40,9871	-19,221	ALTO RIO NOVO	3	5	4	6	9	11	18	56	635907	8,81
7	320040	SUL	-40,6862	-20,7187	ANCHIETA	27	28	45	40	27	75	86	328	664791	49,34
8	320050	SUL CENTRA	-41,5542	-21,7214	APIACA	9	10	10	11	5	8	14	67	664791	10,08
9	320060	L	-40,1762	-19,7656	ARACRUZ	56	68	79	93	78	145	237	756	635907	118,89
10	320070	SUL CENTRA	-41,184	-20,9622	ATILIO VIVACQUA	8	10	10	10	14	21	28	101	664791	15,19
11	320080	L	-40,9838	-19,5724	BAIXO GUANDU	23	34	42	42	45	56	97	339	635907	53,31
12	320090	NORTE	-40,8312	-18,6661	BARRA DE SAO FRANCISCO	36	32	39	44	35	63	90	339	418474	81,01
13	320100	NORTE	-40,3291	-18,4847	BOA ESPERANCA	11	10	20	21	18	31	47	158	418474	37,76
14	320110	SUL	-41,6338	-21,8446	BOM JESUS DO NORTE	4	5	7	10	4	10	12	52	664791	7,82
15	320115	METRO	-41,297	-20,1254	BREJETUBA	6	5	8	7	10	19	31	86	2160204	3,98
16	320120	SUL	-41,191	-20,7661	CACHOEIRO DE ITAPEMIRIM	282	273	250	263	283	418	466	2235	664791	336,20
17	320130	METRO	-40,442	-20,2907	CARIACICA	432	414	430	461	424	742	1172	4075	2160204	188,64
18	320140	SUL CENTRA	-41,204	-20,5517	CASTELO	53	64	51	56	66	79	95	464	664791	69,80
19	320150	L	-40,6568	-19,4882	COLATINA	104	128	130	155	185	296	554	1552	635907	244,06
20	320160	NORTE	-39,8334	-18,4451	CONCEICAO DA BARRA	16	19	20	28	26	34	42	185	418474	44,21
21	320170	METRO	-41,2659	-20,3709	CONCEICAO DO CASTELO	8	17	19	18	12	24	38	136	2160204	6,30
22	320180	SUL	-41,7244	-20,5868	DIVINO DE SAO LOURENCO	10	4	3	3	4	10	1	35	664791	5,26

23	320190	METRO	-40,849	-20,3078	DOMINGOS MARTINS	46	39	42	49	40	86	152	454	2160204	21,02
24	320200	SUL	-41,8121	-20,635	DORES DO RIO PRETO	6	9	2	4	7	7	7	42	664791	6,32
25	320210	NORTE	-40,8077	-18,2656	ECOPORANGA	15	14	24	24	19	31	65	192	418474	45,88
26	320220	METRO CENTRA	-40,3568	-19,9683	FUNDAO	14	18	18	26	19	40	68	203	2160204	9,40
27	320225	L	-40,5	-19,2054	GOV. LINDENBERG	8	10	14	9	21	32	63	157	635907	24,69
28	320230	SUL	-41,7052	-20,7634	GUACUI	49	40	37	46	38	46	57	313	664791	47,08
29	320240	METRO	-40,5462	-20,5851	GUARAPARI	103	127	133	160	153	234	386	1296	2160204	59,99
30	320245	METRO CENTRA	-41,5502	-20,2507	IBATIBA	12	22	23	31	24	42	64	218	2160204	10,09
31	320250	L	-40,4179	-19,8348	IBIRACU	16	11	19	15	14	14	37	126	635907	19,81
32	320255	SUL	-41,6926	-20,486	IBITIRAMA	7	7	16	6	9	9	14	68	664791	10,23
33	320260	SUL	-40,8574	-20,7549	ICONHA	25	29	13	21	16	29	36	169	664791	25,42
34	320265	SUL	-41,6368	-20,3311	IRUPI	11	6	13	12	15	16	22	95	664791	14,29
35	320270	METRO	-40,8646	-19,7286	ITAGUACU	20	24	16	15	21	48	77	221	2160204	10,23
36	320280	SUL	-40,9446	-20,9658	ITAPEMIRIM	31	44	43	44	54	57	77	350	664791	52,65
37	320290	METRO	-40,8889	-19,95	ITARANA	16	14	23	13	15	30	78	189	2160204	8,75
38	320300	SUL	-41,6565	-20,3485	IUNA	23	29	22	24	30	35	54	217	664791	32,64
39	320305	NORTE	-40,417	-18,9497	JAGUARE	28	29	34	36	24	44	84	279	418474	66,67
40	320310	SUL CENTRA	-41,3922	-20,8046	JERONIMO MONTEIRO	19	18	13	24	18	34	29	155	664791	23,32
41	320313	L	-40,437	-19,7154	JOAO NEIVA	22	15	17	12	17	31	62	176	635907	27,68
42	320316	METRO CENTRA	-41,5773	-19,8726	LARANJA DA TERRA	17	13	15	14	12	29	76	176	2160204	8,15
43	320320		-40,2938	-19,3827	LINHARES	121	143	140	135	160	241	589	1529	635907	240,44
44	320330	CENTRA L	-41,7168	-18,8764	MANTENOPOLIS	8	8	7	13	13	17	36	102	635907	16,04
45	320332	SUL	-40,8936	-21,1001	MARATAIZES	32	37	62	62	52	68	89	402	664791	60,47
46	320334	METRO CENTRA	-40,7739	-20,4313	MARECHAL FLORIANO	12	19	13	29	29	44	83	229	2160204	10,60
47	320335	L	-40,5207	-19,4297	MARILANDIA	14	7	6	15	26	36	61	165	635907	25,95
48	320340	SUL	-41,3768	-21,8862	MIMOSO DO SUL	28	29	38	45	47	44	72	303	664791	45,58
49	320350	NORTE	-40,2752	-18,1389	MONTANHA	14	15	23	17	23	33	71	196	418474	46,84
50	320360	NORTE	-40,5125	-18,1479	MUCURICI	4	7	3	7	11	8	14	54	418474	12,90

51	320370	SUL	-41,435	-20,4268	MUNIZ FREIRE	22	16	10	12	15	27	35	137	664791	20,61
52	320380	SUL	-41,3439	-20,9383	MUQUI	26	27	27	22	21	25	32	180	664791	27,08
53	320390	NORTE	-40,5225	-18,6984	NOVA VENECIA	47	46	40	53	57	104	160	507	418474	121,15
54	320400	CENTRA L	-40,8178	-19,1468	PANCAS	10	18	16	17	34	54	93	242	635907	38,06
55	320405	NORTE	-40,3716	-18,1824	PEDRO CANARIO	17	20	15	20	26	30	51	179	418474	42,77
56	320410	NORTE	-40,1982	-18,3699	PINHEIROS	12	24	28	30	36	42	57	229	418474	54,72
57	320420	SUL	-40,7725	-20,8378	PIUMA	18	25	29	24	24	42	50	212	664791	31,89
58	320425	NORTE	-40,5143	-18,2508	PONTO BELO	5	3	8	14	10	18	22	80	418474	19,12
59	320430	SUL	-41,721	-21,1407	PRESIDENTE KENNEDY	18	9	22	25	26	29	29	158	664791	23,77
60	320435	CENTRA L	-40,3082	-19,2305	RIO BANANAL	14	18	21	19	22	26	89	209	635907	32,87
61	320433	SUL	-40,9188	-19,2303	RIO BANANAL RIO NOVO DO SUL	15	20	19	19	11	30	23	129	664791	19,40
62	320440	METRO	-40,5393	-20,8181		15	14	19	20	20	32	23 41	156	2160204	7,22
63	320450	METRO	-40,8064	-20,1232	SANTA LEOPOLDINA SANTA MARIA DE JETIBA	49	36	46	41	50	96	180	498	2160204	23,05
			1	,											· · · · · · · · · · · · · · · · · · ·
64	320460	METRO CENTRA	-40,6348	-19,8792	SANTA TERESA	24	27	33	43	42	59	94	322	2160204	14,91
65	320465	L	-40,5667	-19,1225	SAO DOMINGOS DO NORTE	10	6	14	9	7	17	34	97	635907	15,25
66	320470	CENTRA L	-40,5084	-18,9527	SAO GABRIEL DA PALHA	21	42	36	39	44	68	122	372	635907	58,50
67	320480	SUL	-41,6557	-20,9828	SAO JOSE DO CALCADO	15	10	9	15	15	29	28	121	664791	18,20
68	320490	NORTE	-40,2028	-18,7496	SAO MATEUS	85	62	76	106	85	162	212	788	418474	188,30
69	320495	CENTRA L	-40,6795	-19,7197	SAO ROQUE DO CANAA	8	8	17	14	17	31	57	152	635907	23,90
70	320500	METRO	-40,3016	-20,1281	SERRA	429	491	539	586	517	894	1395	4851	2160204	224,56
	220501	CENTRA	•	,			10			22	0.1		165	(25005	ŕ
71	320501	L	-40,1466	-19,7261	SOORETAMA	14	18	17	15	22	21	60	167	635907	26,26
72	320503	SUL	-41,491	-20,6471	VARGEM ALTA	22	21	28	34	33	38	44	220	664791	33,09
73	320506	METRO	-41,1402	-20,3704	VENDA Nva IMIGRANTE	23	31	28	23	26	38	102	271	2160204	12,55
74	320510	METRO	-40,5127	-20,4011	VIANA	57	67	83	62	81	165	247	762	2160204	35,27
75	320515	NORTE CENTRA	-40,6271	-18,6142	VILA PAVAO	6	4	13	11	12	24	41	111	418474	26,52
76	320517	L L	-40,3296	-18,9666	VILA VALERIO	11	12	19	16	17	26	37	138	635907	21,70
77	320520	METRO	-40,3783	-20,4341	VILA VELHA	501	460	485	547	506	878	1623	5000	2160204	231,46
78	320530	METRO	-39,8797	-20,304	VITORIA	423	436	434	466	414	657	1748	4578	2160204	211,92

Tabela Suplementar S3: Matriz binária de pesos determinados pelo inverso da distância entre os municípios do estado do Espírito Santo.

SWMDist 0 No .51005875 0 .4199498 1.935252 0 No No 2.3477745 .52375312 .44188979 0 2.2424771 .62678088 .48677783 1.417884 0 No .59555866 2.8952813 1.4195147 .6294358 .73942082 0 No No 2.1094708 .57160302 .44967202 1.2066796 4.7793943 .65462912 0 No 1.0739894 .34887886 .30741733 .9973298 .73156398 .39003293 .75402959 0 No $.67773654\ 1.0199541\ .66912321\ .60833499\ .97088304\ 1.0236587\ .92512982\ .4179778\ \ 0$ $11.237254\ .49050351\ .40770265\ 2.4367944\ 1.8695676\ .57067607\ 1.8043775\ 1.1839849\ .63918635\ 0$ No $.75212164\ 1.5478551\ .94706854\ .79109082\ .99620706\ 2.8455511\ .84442296\ .44976392\ 1.2041793\ .71217483\ 0$ No $.44490607\ 3.1747576\ 4.4823239\ .46206187\ .5269302\ \ 1.7349872\ .48599256\ .31850699\ .78134235\ .43047028\ 1.088083\ \ 0$ No $.39399641\ 1.5568682\ 1.4959978\ .39527332\ .46773462\ 1.0126822\ .44203096\ .28895454\ .77519486\ .3815563\ \ .78769637\ 1.8731165\ 0$ No $.92830324\ .33253193\ .29512246\ .88388012\ .66065725\ .37007864\ .67951044\ 6.8156426\ .39384283\ 1.0096725\ .42312958\ .30504042\ .27744538$ No No 1.2696752 .78235267 .61105055 1.5801488 1.5557697 1.0460677 1.1744335 .61857099 .84952823 1.1842232 1.5736369 .6528403 .52497676 No $1.0957387\ .73762294\ .53797658\ .86547875\ 2.1181942\ .83292452\ 2.0295425\ .5518416\ \ 1.6991181\ .99924118\ 1.11147\ \ \ .59860614\ .55263984$ No

No 2.8473294 .60775033 .48883992 2.8302823 2.6515627 .74167967 1.8382404 .81903116 .77280978 2.4333621 .99624027 .52026064 .44552623 No .67453994 1.9007426 .97146305 .66629459 .91819701 2.3535369 .81247827 .41549709 1.8019832 .6387842 2.9612256 1.1899355 .94731371 No .36106383 .9469537 .85791801 .35354575 .42731437 .71923018 .4118261 .27022095 .73299939 .35007108 .6208606 .97845821 2.0108248 No $1.846094 \quad .66992699 \quad .53370604 \quad 2.3341253 \quad 2.0856481 \quad .84518387 \quad 1.4792162 \quad .72413692 \quad .80221021 \quad 1.6750612 \quad 1.1808803 \quad .56840941 \quad .47483912 \quad .72413692 \quad .7241$ 1.4873232.52975045.455718974.03245461.1139807.64429679.9555193.8715927.570597521.519748.79619639.47209866.39635258No 1.5411689 .74562664 .55639736 1.2772601 3.8902975 .91279671 2.2627952 .63301995 1.1572872 1.3601762 1.3375518 .60910006 .5274975 No 1.364359 .50635065 .44054564 3.2371119 1.0125398 .61084134 .88576291 .89560805 .53978083 1.4121153 .74222254 .45460315 .38283301 No .37764732 1.4141522 3.1821121 .39157619 .43508693 1.0286872 .40715508 .28284486 .61441391 .36727533 .75836183 2.4924056 1.8997203 No No .83044765 .93242998 .6303124 .72439823 1.3177242 1.022856 1.2202588 .47103112 3.6837711 .77330186 1.3485222 .7215488 .67393709 .55511737 2.9171806 1.1775331 .54859301 .71563311 2.0516553 .65585937 .36657337 1.5452923 .53040919 1.6466076 1.5801865 1.3502506 No 1.6854654 .49215845 .42447528 5.1207738 1.1104229 .58776085 .9804089 1.031112 .54770152 1.7927308 .71815931 .44011805 .37566151 No 1.5206988.61442569.47236065.1.0224368.3.5501319.69753607.5.1674422.65834811.1.1121775.1.3495101.90643586.51545186.47358215No No 1.2978353 .66219778 .54936474 2.1272331 1.2689353 .852072 1.0177518 .67995511 .68626919 1.2497158 1.1316228 .57468381 .46575624 No .78454287 1.0800219 .69457991 .70956695 1.1961108 1.1945489 1.0826362 .45406216 3.9770282 .73362986 1.6031161 .80669785 .73909982 1.4326761, 56019957, 47877563, 3.4078413, 1.1506515, 69042954, 96810814, 80438651, 59565173, 1.4352255, 86485234, 49667158, 41295383No 3.2993542 .55933818 .44590383 1.5186196 5.1706882 .64961343 5.7150644 .83930054 .83254075 2.5848241 .84088199 .47871073 .42903155 No 1.3158637 .61556593 .51972209 2.4568614 1.1868613 .77744377 .97414571 .71802221 .63844674 1.2875121 .99896151 .54063667 .44197043 No No .8369702 - 1.3039038 - .82024136 - .84370537 - 1.1959208 + 1.9151833 - .99400823 - .47421551 - 1.4503753 - .78473405 - 5.0906946 - .94075518 - .73842657No 5.1170812 .49876653 .40821073 1.6097842 2.3882663 .57297477 2.7967871 1.0300489 .70171145 4.1766503 .71741134 .43432265 .39119848 $1.0269472\ 1.010597$ $.69568378\ 1.0080606\ 1.6206701\ 1.3594903\ 1.2579534$ $.52847954\ 1.3583356$ $.94842466\ 2.568607$.77811596 .63753349No 1.3144267 .60612627 .51359674 2.5182408 1.1668792 .7626553 .9629245 .72635896 .62855175 1.2911102 .97367248 .5336499 .43703633 No $.48308291\ 3.0014545\ 1.3818465\ .4801387\ .60041885\ 1.5837442\ .5588594\ .3337847\ 1.1754047\ .464303\ 1.187542\ 1.9921866\ 2.113422$ No No 3.5662776.51450983.43067884.6.6951715.1.6279169.61177671.1.4060885.1.0741186.62521838.3.8299983.77035417.45231709.39187136No .73220353 1.2376603 .75581635 .67882033 1.0708367 1.351961 .9673668 .43552154 3.7647673 .68800562 1.7692573 .8921395 .80945433 No .89546461 .81669854 .67795853 1.1775751 .98019743 1.137506 .81382672 .54084318 .71163444 .86324153 1.5035768 .70496062 .53573839 No .57943669 1.6270978 .89647727 .5523055 .77160274 1.4046097 .71817859 .37640512 2.4961816 .55153228 1.3973906 1.1164527 1.1127882

 $.47563542\ 1.0289982\ 1.2423773\ .53934488\ .52419316\ 1.2392554\ .47372922\ .35092213\ .56216303\ .464519\ .98932813\ 1.0986414\ .69352121$ No No 3.2172351 .46847535 .38677059 1.3723744 1.8509621 .53152494 2.3035624 1.1026482 .66005161 3.1100881 .65346486 .41072346 .37375663 No No $.63094583\ 1.9483692\ .97105876\ .61406481\ .85120434\ 1.956846\ .76952927\ .39778601\ 2.0782745\ .59884561\ 2.0635677\ 1.2130901\ 1.0370907$ $.97753734\ .33528124\ .294902$ $.85116304\ .69831443\ .37126005\ .73720331\ 4.1300369\ .41036434\ 1.0594609\ .42609005\ .30618788\ .28096527$ No .34674624 1.044649 1.2277226 .34928699 .40208647 .77199631 .38280217 .26288208 .61358763 .33715217 .62534119 1.3050063 2.8568767 No .35534133 1.1683683 1.6430182 .36231216 .41044436 .85224869 .38810682 .26865733 .60520516 .3456247 .66647058 1.6437621 2.6072745 No 1.7853916 .62124604 .51026104 3.2954377 1.6046355 .77745737 1.2443688 .76916808 .70330453 1.6911378 1.035024 .53726163 .4474622 No No 4.510201 .48645099 .40876505 3.6007647 1.5670392 .57015567 1.4423223 1.233202 .60428337 6.188266 .70796612 .42932397 .37663573 $.43908846\ 2.8228441\ 1.968517\ .44412786\ .52905215\ 1.4300077\ .49337711\ .31306959\ .89128379\ .42400292\ 1.0118607\ 3.2211729\ 3.4699657$ No .56352447 5.2846636 1.5263675 .58130467 .7056614 5.4085288 .63398432 .37343815 1.1218251 .53996599 2.1890025 2.0794881 1.2152083 No .35524007 1.1443466 1.4106368 .35935088 .41243259 .82830459 .39128685 .26800092 .62686984 .34529409 .65839743 1.4987148 3.2756513 No No .37179027 1.2267566 1.2316113 .37127808 .4381455 .86168522 .41685388 .27659348 .71637643 .36056272 .69618883 1.4308491 5.7429153 No 2.7892048 .5354348 .42880859 1.3300846 3.580243 .6131142 6.797115 .84766477 .81508218 2.3258832 .77945658 .46029835 .41762244 $.36853296\ 1.3210013\ 1.8152323\ .37540669\ .42842461\ .92653214\ .40423401\ .27601215\ .64429644\ .3580516\ .71299789\ 1.9141158\ 3.3521129$ No 1.5539359 .4205382 .36734453 2.1324323 .93992731 .4865646 .89481039 1.6552081 .48351184 1.7672175 .57705143 .38026744 .33348576 No .53931855 1.951939 1.0082028 .52175055 .69889901 1.4726976 .65127663 .3590439 1.8142114 .51529594 1.3206009 1.2996318 1.3404226 No No 4.5192251 .538931 .43424609 1.6549066 3.7000502 .62555428 3.9535132 .90549756 .77633302 3.312697 .80166346 .46429976 .41549859 No 1.0316979 .85335737 .59864871 .87454466 1.8998706 .99285074 1.6304 .52819843 1.9623 .94504005 1.4129217 .6729504 .60537869 3.0956717 .53145422 .42693977 1.3876179 3.4729372 .60972289 5.5913727 .87152229 .79670588 2.5403516 .77463019 .45764059 .41424572 No .88658294 1.0916207 .70929718 .82180125 1.4061201 1.3394956 1.1890161 .48570563 2.1163178 .82350871 2.1521506 .81376045 .7004853 No .53815873 4.2045281 1.3459162 .53840563 .68270042 2.3156966 .624739 .35968388 1.3289673 .51531158 1.6298565 1.8959173 1.469412 No No $.49077542\ 4.136637\ \ 1.527303\ \ .49179768\ .60887235\ 1.8222906\ .56342561\ .33788527\ 1.1386996\ .47169292\ 1.2803669\ 2.3166621\ 1.9953209$ No 1.8638938 .45308736 .39174016 3.3492243 1.0769846 .53067512 .99520837 1.3413173 .52195762 2.1181969 .64009903 .40666471 .35354798 No .42822944 1.6960151 1.2085131 .42249052 .52118203 1.0927588 .49320537 .30631144 .98385574 .41314528 .881462 1.5774695 3.4081509 No .79566524 1.3286778 .80370753 .76750465 1.1668465 1.7065926 1.0010182 .45777616 1.978622 .74567777 2.9576709 .93946019 .77899829

No	$.88820515 \ .80552568 \ .56977387 \ .74085031 \ 1.4648773 \ .87947679 \ 1.4189414 \ .49341384 \ 2.6070574 \ .82354282 \ 1.1364727 \ .64309653 \ .60841299$
No	$.65582126\ 1.0343075\ .67638917\ .59138606\ .92649727\ 1.0197179\ .88513308\ .40952802\ 20.249468\ .61965758\ 1.1747579\ .79247781\ .79699106$
No	2.2707267 .54543363 .45723077 13.117094 1.4944248 .66115581 1.237695 .92924275 .63172174 2.2732413 .8414892 .47893268 .40737004
No	1.90822 .68795402 .53781671 1.9526727 2.7165681 .86238314 1.7477708 .70773082 .87869003 1.6852013 1.2297073 .57733549 .48715246
No	$1.2699946\ .68954885\ .5139628\ .95095733\ 2.8250631\ .78623805\ 2.7634947\ .59467002\ 1.3906487\ 1.1429409\ 1.0490766\ .56690669\ .51944333$
No	$.42842904\ 2.6557882\ 2.6155553\ .43767694\ .51023502\ 1.4173954\ .47500542\ .30840396\ .80869476\ .41440296\ .97809008\ 4.7492088\ 3.0772773$
No	$.47940207\ 2.3810296\ 1.2425343\ .47257802\ .5977435\ \ 1.4183033\ .55929536\ .3317072\ \ 1.2291019\ .46065268\ 1.121527\ \ 1.7100815\ 2.0751614$
No	1.1383574 .6622137 .49633777 .85328067 2.14058 .73675959 2.384925 .57354761 1.4319881 1.0379673 .94953252 .5479314 .51283096
No	$.72489448\ .62804293\ .47443727\ .59269731\ 1.0179699\ .64559263\ 1.102691\ .45582491\ 1.6271028\ .68445702\ .75500879\ .52792767\ .53363379$

0 0 0 0 0 0 0 0 0 0 0 0 0

No (

No .57079824 0

No .85773291 1.5397593 0

No .51064025 1.1483813 1.1272298 0

No .73397256 2.2914632 4.6563172 1.2415657 0

No .39201319 1.1071434 .72197825 1.2037468 .83608265 0

No .25995501 .44877517 .37190174 .51457962 .39789402 .75250143 0

No .65834121 4.0411469 2.4857818 1.2080208 5.2302731 .93244303 .41664404 0

No .79297237 1.5898463 1.7769639 .75979446 1.9170742 .65277899 .35001148 1.9731747 0

No .5795024 2.0674319 1.7486685 2.4549597 2.3216771 1.1878895 .47135376 2.3715037 1.0883635 0

No .81791322 1.3799704 1.5753996 .70787492 1.629225 .61429707 .33881772 1.648268 9.993355 .98311978 0

No .27224819 .52000739 .39529956 .48594102 .43098997 .81176023 1.0093409 .46413196 .40069626 .48956795 .38857088 0

No .44059076 1.049065 .8663049 2.9985881 .97212138 1.7664084 .62089846 1.0057316 .66621915 1.6723656 .6246936 .56772983 0

No .34812833 .8215478 .58585875 .92005081 .65818224 3.0921045 .98903882 .7170176 .54171891 .86477598 .51532385 1.0112642 1.2882207

No .92289772 1.320167 1.9447039 .74142675 1.8378946 .60573952 .33561208 1.6974254 5.628363 1.0310362 5.9868376 .37676534 .63880705

 $.60091088\ 1.1358609\ 1.4930487\ 3.2021955\ 1.5182205\ .90705109\ .4433493\ \ 1.3315923\ .84870106\ 2.4352719\ .78931939\ .4284087\ \ 1.5498094$.62653775 3.5390623 1.5918314 .9017938 2.1796824 .85136881 .40136295 3.240286 2.6417298 1.4214265 2.1502232 .4718224 .81539874 $.42571442\ 1.0800979\ .82618709\ 2.190448\ .93992668\ 2.3755573\ .66330588\ .99676354\ .66336112\ 1.5625815\ .62207465\ .61846299\ 6.8114285$ $.73533711\ 1.8680785\ 1.7405335\ .79005163\ 2.0282365\ .69530861\ .36222188\ 2.2628052\ 9.4578977\ 1.1598003\ 5.2340027\ .41837538\ .69801495$ $.74737139\ 1.3023943\ 2.9958212\ 1.6053574\ 2.4891979\ .77973396\ .39579125\ 1.7834878\ 1.1322731\ 2.2361915\ 1.0393015\ .40163774\ 1.0724912$ $.66073638\ 2.5170746\ 1.6055345\ .83648816\ 2.0584405\ .77359011\ .38321794\ 2.6809589\ 3.7004292\ 1.2687844\ 2.8504228\ .44928945\ .75161152$ $.44414837\ 1.7041154\ .91940405\ 1.4219159\ 1.1231273\ 3.1468407\ .60737714\ 1.3204037\ .82317402\ 1.7258307\ .76263711\ .6830194\ 1.7806182$ $.8953745 - 1.0973725 \cdot 3.153487 - 1.1881774 \cdot 2.0469219 \cdot .66430198 \cdot .36301416 \cdot 1.4790354 \cdot 1.1533954 \cdot 1.5040204 \cdot 1.0771728 \cdot .36987176 \cdot .86369521$ $.49120508\ 2.2514343\ 1.1490924\ 1.7795063\ 1.4721961\ 1.9348461\ .54403397\ 1.7697269\ .95189558\ 2.7775634\ .86986554\ .59299826\ 1.8781285$ $.66831886\ 2.3632571\ 1.5990177\ .82246062\ 2.015793$ $.75819789\ .37941601\ 2.5561023\ 4.035671$ $1.2368056\ 3.0668243\ .4446029$.73844117.31844264 .68094717 .50646176 .74556016 .56024406 1.6963296 1.2962284 .60406791 .47729923 .70166523 .45706523 1.269381 .9799991 .93658996 1.4579742 4.8818898 .92571355 3.1723668 .66317554 .35361965 2.213633 2.5171887 1.3584569 2.208317 .38381565 .75132144 409413371.0496557.773240821.7381873.881229493.1633529.7110385.9462825.643251451.3858629.60449513.668240913.7693324.50688595 2.6492261 1.0272682 .82656343 1.2903214 1.0024565 .44372731 1.7019354 1.3713707 1.1786516 1.25346 .56124132 .81680869 .35676179 .80117413 .60646568 1.0869119 .67494749 2.6454568 .95739729 .72139925 .53478543 .92684992 .50809164 .81325179 1.6978338 .33677414 .75894178 .50981796 .52520543 .57075664 .81706071 .51755132 .64062241 .584663 .59740892 .56779155 .91304378 .57336174 .95243106 .94797663 2.2360771 1.0790012 1.5870804 .61381809 .34980158 1.2213437 1.0239284 1.2602211 .97130876 .35263921 .79833775 $.60444321\ 1.6502642\ 1.8694735\ 2.7747247\ 2.2388467\ 1.0523077\ .45505382\ 2.0171782\ 1.0382168\ 6.9195643\ .94516001\ .46169667\ 1.6047567$.37607137 .95936875 .66886809 1.1566754 .76121728 6.7515097 .83279972 .83301826 .59892787 1.0667559 .5660966 .83402119 1.7763758 3.8400367 .56732847 .88075534 .54078726 .7431628 .39940009 .265158 .6581596 .74342563 .60085052 .75487182 .27284702 .46034687 .25336031 .44765166 .35941618 .4633318 .38677793 .71313944 1.8602768 .40949987 .35152421 .44572405 .34113605 1.8267298 .54608109 .25886499 .47006526 .36972821 .46642659 .39979101 .74181828 1.3488615 .42604728 .36719041 .45746927 .35635521 3.1469537 .54733266 $.69846519\ 3.0166327\ 2.3927606\ .99778494\ 3.8077832\ .82020194\ .39247544\ 5.6168192\ 3.0234244\ 1.6724715\ 2.3211703\ .4443724\ .85351777$ 1.050849 1.2281381 4.3440402 .90071145 2.4328553 .62321202 .34305474 1.7460679 1.9303282 1.2477052 1.79263 .36685065 .7226012 .29969722 .61592302 .46017652 .62723449 .50641896 1.2482642 1.3621058 .54637593 .44673934 .60895575 .42978943 1.9290656 .78087017 .35479801 .91779295 .60177658 .83055303 .68632537 2.6494245 .82720432 .7671653 .58767645 .86103743 .55871579 1.1347034 1.0615836

No No

No

No

No

No

No

No No

No

No

No No

No

No

No

No No

No

No

No

No No

No

No

No

.25815748 .4646729 .3689337 .47405593 .3982031 .74819013 1.6696531 .42298915 .36247362 .45906791 .35157353 2.2524055 .55993187 .26598526 .48286373 .38554265 .51646979 .41623178 .82734987 2.6844231 .44091355 .37154576 .48917544 .35954681 1.6171817 .62256993 $.75473807\ 1.13032$ 2.3549883 1.5644969 1.9315253 $.73823608\ .38904637\ 1.4719356\ 1.0157468\ 1.8672917\ .94410535\ .38872975\ 1.0375573$.26566506 .49227344 .38391498 .48991788 .41630688 .8028506 1.4122972 .44457213 .38010878 .47983943 .36838238 3.4033116 .57981945 $1.4099678\ .90879129\ 1.5407661\ .65117115\ 1.2759517\ .50875911\ .30387689\ 1.118171\ \ 1.8051499\ .82925761\ 1.9461372\ .3314861\ \ .55591921$.34117474 .74984058 .56455033 .935765 .62644395 2.3066549 1.0896714 .67149273 .50995585 .82956716 .48595465 .92037043 1.3524146 .79936792 1.2669966 3.6081053 1.406538 2.5624408 .737745 .38322478 1.766237 1.1930235 1.9414513 1.0966382 .3913978 .98149357 .49020942 1.3198302 1.0923186 5.1617037 1.2644253 1.5486191 .54931058 1.3026108 .78580115 2.7734762 .72893432 .53280428 4.17749 .773429861.14156632.53878951.49600572.0093197.72934774.385316231.50448541.04676521.834938.97216015.386770841.0093697.4535692 1.4155887 .9552169 2.2005081 1.1350049 2.5535893 .60871167 1.249974 .76970646 2.0871108 .71478728 .61620571 3.4248147.34201502 .80605258 .56875303 .85114763 .63900755 2.6547766 1.0017437 .69886507 .53570224 .82068615 .51038182 1.1234573 1.1474442 .32225357 .70765899 .51610205 .74647639 .57347758 1.7996951 1.1839972 .62197916 .4909512 .71571077 .46985499 1.3342633 .9738695 1.1600027 1.0758906 1.9503652 .71574588 1.6015623 .55627022 .32008205 1.3783003 2.4878628 .9507006 2.6224694 .35131313 .6067358 .29326792 .56887956 .44530322 .64119588 .48506109 1.1534155 2.0889798 .51579111 .41919608 .59280416 .40340913 1.2908301 .81406205 $.42929667\ 1.3534856\ .85854529\ 1.6170417\ 1.0167003\ 4.2992382\ .65366976\ 1.1411201\ .73645241\ 1.6338604\ .68669048\ .68505166\ 2.4548675$ $.46022782\ 1.0046275\ .91358801\ 4.6546557\ 1.0031248\ 1.3663234\ .57244424\ 1.0055999\ .66891935\ 1.7356561\ .62762777\ .51811485\ 5.9139961$.38633243 .82120415 .67845406 1.5692772 .74539358 1.7763338 .75832765 .77412352 .55637666 1.0964641 .52703441 .62375753 3.1182434 $.82920177\ 1.7964277\ 3.0985602\ .90262887\ 3.3063332\ .7003125\ .36282385\ 2.8063929\ 4.1476543\ 1.3771152\ 3.1121935\ .40361571\ .75651833$ $.64324342\ 3.4374004\ 2.5067199\ 1.4230264\ 5.2029778\ .9940366\ .42975201\ 7.9541374\ 1.6051544\ 3.3571598\ 1.3848328\ .46927635\ 1.1355612$.5471258 1.2029354 1.2982598 7.6280655 1.4134759 1.082034 .48295822 1.3266006 .81576336 2.8655483 .75743036 .46386992 2.1737109 .29554422 .6049887 .44953497 .5928913 .49467076 1.1435597 1.2321611 .53499911 .44302643 .58547312 .42687751 2.5468938 .72422873 .3164824 .66247534 .50123831 .75253192 .55239213 1.6240988 1.3892294 .59248623 .46775055 .69529079 .44804232 1.1784536 .99796464 $.52955096\ 1.0318092\ 1.1390285\ 6.3734689\ 1.1989798\ 1.0141798\ .48491328\ 1.1237246\ .73812495\ 2.0518532\ .69069074\ .45236757\ 2.1446506$.42833383 .70004346 .71924044 1.7778504 .74224967 .88757785 .53780001 .72054316 .53582544 1.0316644 .51006301 .44648743 1.7142542

No No

No

No

No

No

No No

No

No No

No No

No

No

No No

No

No

No

No

No No

No

```
No 0
```

- No .50766298 0
- No .72435812 .85273745 0
- No .67485041 1.8670166 .94494789 0
- No 1.5753267 .63000445 1.3137432 .82900262 0
- No .57144698 3.6004067 .86901333 3.6366339 .69862306 0
- No .62883702 1.1794362 2.8205521 1.1670834 .98070994 1.1396725 0
- No .62502618 2.2849323 .89299306 8.4610156 .75982817 6.0768353 1.1271927 0
- No 1.5679913 .75006523 1.0942922 1.1604137 2.1777059 .89116834 .97432124 1.0209733 0
- No .55075183 1.2705881 1.8146438 1.0672261 .80153968 1.1253181 4.3822254 1.0648897 .80659875 0
- $No \qquad 1.1903643\ .86774741\ 1.3856041\ 1.3765147\ 2.0623812\ 1.0351647\ 1.2414092\ 1.1912765\ 4.4896376\ .98298629\ 0$
- $No \qquad .61495593\ 2.3936081\ .88083648\ 6.923967 \quad .74576802\ 7.0357646\ 1.11542 \quad 38.103448\ .99437457\ 1.0613143\ 1.1562221\ 0.06149593 \quad .061495593\ 2.3936081\ .06149593\ 0.0614959\ 0$
- No 3.7199905 .44950291 .60955454 .57958605 1.1297514 .50079139 .53816016 .54261162 1.1131177 .47984605 .9041245 .5350515 0
- No .54606039 3.1673791 1.1441022 1.7361868 .72744048 2.2834622 1.8618354 1.8764718 .83444664 2.1022023 1.0082581 1.8969315 .4771752
- No 1.9457722 .60782566 1.1408687 .80956579 8.2701733 .67879521 .89183251 .74151593 2.3372544 .74102874 1.9640122 .72777685 1.3054645
- No .78913689 1.1111512 .79784586 2.637758 .86205778 1.6022696 .87815823 2.1626047 1.3753933 .79173283 1.4435481 2.0727669 .67449465
- No 3.6771635 .50646568 .8139169 .65483596 2.1328685 .56131307 .67410294 .60821442 1.4982249 .58423266 1.2162847 .59871136 2.2212102
- No .51675719 1.1380294 1.6098843 .93147239 .73981271 .99228242 2.8815292 .93508677 .72897738 6.9599025 .86950518 .93373758 .45401684
- No .79609861 1.0113274 3.6386667 1.254651 1.4396875 1.086535 2.9917479 1.1511221 1.4113984 1.7821379 2.0209221 1.1280285 .65618263
- No 4.437666 .56061466 .86531336 .75943062 2.3928685 .63385459 .73138534 .69702985 2.1947513 .62756811 1.5689711 .68451894 2.0360374
- No .35453599 .85481427 .64782981 .6080322 .4416127 .69665609 .80332691 .63425526 .45094278 .98344719 .50081668 .63981252 .32368688
- No .9175058 .33457621 .40630646 .40536622 .5875692 .36471267 .37312976 .38748858 .58980755 .34422506 .52293901 .383751 1.2149264
- No .94560449 .34787337 .41026619 .42645609 .59186913 .38182841 .38026999 .40721393 .61750846 .35077906 .54319442 .40319894 1.2384939
- No .65011118 2.3164106 1.1076724 4.7525457 .84977144 3.7827318 1.5054286 4.4771299 1.109231 1.3724099 1.379461 4.2557535 .557443
- No 51882052 2.4910073 1.1463118 1.3930903 .69421628 1.7508629 1.9236076 1.4834638 .76855621 2.4990207 .91915139 1.4980791 .45579301

No No 3.0945874 .54225335 .68319407 .75484399 1.25666 .62517137 .62167095 .69447392 1.7134019 .5484385 1.240229 .68239838 2.238887 No .9699749 .34421314 .41510609 .42007305 .60494657 .37658659 .38197847 .40103588 .61619684 .35189991 .5429759 .39706276 1.3010972 No 1.1257589, 35355301, 44595471, 43171686, 67508199, 38601864, 40413347, 4111339, 66079836, 37022569, 57989413, 40684515, 1.6137382 $.6042051 \quad 1.0687139 \ 2.9477097 \ 1.0262233 \ .93998244 \ 1.0151062 \ 8.4248685 \ .99810485 \ .89840652 \ 4.662263 \quad 1.1167566 \ .98967588 \ .52046977 \ .0262233$ No 1.047519 .35963969 .42835576 .44399334 .63015242 .39576925 .39565059 .42303545 .65844811 .36378949 .57472144 .41867269 1.4172854 No $.43699281\ 2.6478856\ .76946444\ 1.1034354\ .54204541\ 1.5257737\ 1.0572234\ 1.228553\ .60549634\ 1.2565424\ .68837949\ 1.2580509\ .39219463$ No 5.1696154 .48215168 .72706913 .62214809 1.6280831 .53506727 .61715117 .57960233 1.3389973 .54102981 1.0815202 .57092171 3.3205178 No No $.60014664\ 1.2684871\ 2.2754361\ 1.1779928\ .90618256\ 1.1874929\ 11.348791\ 1.152615\ .91667911\ 6.6716635\ 1.1512063\ 1.1434679\ .51688554$ 1.0885516 .75179693 2.1644978 .98143491 3.1962802 .82711301 1.4138135 .89522111 1.9553514 1.069488 2.5631635 .8774201 .84756125 No $.59735981\ 1.1073125\ 2.6872834\ 1.0461633\ .9191046\ 1.0433079\ 9.1841964\ 1.0206531\ .8896482\ 5.5678378\ 1.1051083\ 1.0125764\ .51522396$ No 1.4551789, 7202675, 1.4055464, 1.0122532, 4.5162397, 82004239, 1.1067437, 90975929, 3.6393962, 88505397, 3.7915039, 88943787, 1.0474358No No 9.3972477 .50069033 .68361848 .66811352 1.3741266 .56552207 .60308854 .61945137 1.4806292 .53144669 1.1260728 .60961611 4.3740969 No 3.9561457 .46073144 .61243514 .60083214 1.1277473 .51618608 .54476439 .56136533 1.1713515 .48549357 .93687969 .55332001 10.931209 $.84842637\ 1.3519886\ .59234596\ 2.0071059\ 1.2045484\ 1.5338754\ .67437184\ 1.4059667\ .77739143\ 1.5764652\ .42003269$.47166507 4.446 No 1.8378771 .39800487 .53551002 .49574627 .90387179 .43707941 .47405348 .46840857 .84622081 .427889 .72324952 .46275542 3.4116055 No 1.8356743 .68334416 1.1420383 .98050356 3.499168 .78722904 .95202748 .88032433 5.3942436 .78494639 3.2125555 .86066806 1.2292057 No No 1.0594819 .64904986 1.9292971 .79705122 3.1692402 .6962251 1.1937042 .74042468 1.4483983 .94695656 1.6293504 .72847418 .84452419 No 1.5889313 .5341081 1.0555136 .66734453 3.4210632 .58048927 .79968711 .62173974 1.3925943 .67826801 1.2897151 .61229906 1.2162635 $.57158793\ 4.1025007\ 1.0561089\ 2.4950952\ .743012$ $3.8743647\ 1.5559277\ 2.8736392\ .89946296\ 1.5810458\ 1.0856012\ 2.9288707\ .49783832$ No $.75221873\ 1.4529888\ 1.5831529\ 2.3413215\ 1.1120585\ 1.7719508\ 2.0951948\ 2.00742$ $1.4316087\ 1.5958375\ 2.0415183\ 1.9351104\ .62725579$ No .83625467 .80236354 5.346682 .95391575 1.7416588 .84536018 2.0245283 .88789891 1.3174741 1.4066403 1.7025029 .87337061 .687482 No No 1.6538967 .41590242 .50696238 .53223826 .80750988 .46431217 .46446639 .50206402 .87768694 .42143281 .73467481 .49585274 2.526466 No 3.4092782 .44190313 .61240014 .56443379 1.1459048 .48992133 .53632138 .52919554 1.0740411 .47809777 .88393247 .52197205 11.227174 No .80989219 .73142213 4.4282144 .84304515 1.6650895 .76025189 1.7342516 .79193362 1.1669984 1.2872903 1.4212291 .78058386 .67343926 No .79261374 .53122471 1.3825066 .59831903 1.4005697 .54884179 .92879016 .56904841 .87664846 .79756971 .93502557 .56263003 .68633339

No No .69026922 0 No 1.0523848 .86874144 0 No .556558 2.7606553 .72789877 0 .51142487 .65346433 .99414438 .66208641 0 No 1.7253115 .68588542 .71171283 .54972779 .42173767 0 No No 1.3844762 1.2639793 1.0219011 .86711784 .5499301 1.4718391 0 .61432181 3.3593185 .87286093 4.315571 .75878448 .58430994 .96803677 0 No .92446215 .42274642 .49417359 .36660704 .33014888 1.0836753 .63495508 .38441445 0 No .34598423 .63098842 .46120132 .80389741 .61753045 .33057271 .4262584 .76103205 .25602362 0 No No .35732848 .63721477 .49336957 .79744491 .71049523 .33594978 .43511232 .7801128 .26062726 4.2094398 0 $2.6299046\ .81595899\ 1.747709\ \ .64652574\ .63461053\ 1.157458\ \ 1.5126415\ .73922966\ .68465502\ .38985244\ .40675596\ 0$ No No .4388491 .97984996 .63355421 1.3861124 .82813107 .41150194 .57111329 1.3674052 .30300609 1.634621 1.8161372 .51165565 .41916687No .56997012 1.4613019 .95190697 1.7402889 1.0651817 .51158769 .77810112 2.4375299 .35767537 .87357391 .95738168 .70373985 .53559697 No No .35539169 .65172735 .48166331 .83140805 .66064767 .33738767 .43772729 .79605245 .2605691 9.4498146 6.8915199 .40265528 .34219558 .36876965 .7317735 .49029231 .98300287 .62467334 .35494772 .46723866 .90266996 .26964622 4.107014 2.5986485 .4166556 .35558235 No 1.6113172 .85361646 .7956976 .65280103 .4593681 3.4623583 2.459526 .69909293 .82640506 .3643799 .37003317 1.2826311 1.7237592 No .37030463 .6818369 .51569822 .86720606 .73771325 .3479028 .45540803 .84822132 .26764455 3.7877871 9.7149437 .42324027 .35554747 No 2.1266993 .52126852 .78352981 .44161088 .44163098 1.2070736 .84502982 .47845986 1.2178787 .30012786 .30982677 1.3001581 2.336064 No No $.52321005\ 1.9930016\ .70308072\ 6.5407458\ .68849875\ .51044415\ .77644313\ 3.4326172\ .34932622\ .91567578\ .90769637\ .60849421\ .50068108$ No 2.1114285 .83100202 .8678625 .63873476 .47634855 3.5328615 2.4206306 .69236495 .86048779 .36291517 .37024074 1.543775 2.2638824 No $.91600641\ 2.3787459\ .93648956\ 1.2818607\ .58312341\ .96233638\ 2.5824432\ 1.4416083\ .51233797\ .4995542\ .50621601\ 1.0573957\ .87314688$

1.7017145 .83733902 .8027564 .64295507 .4598866 3.791274 2.3746902 .68975451 .84613575 .36182605 .36776529 1.3185963 1.8366483

No

No	.83624406 3.89	35404 1.0	0610156 1	.6601687	.67787235	.80129976	1.7565359	2.1564888	.46734258	.56271773	.57616842	1.0313928	.78462934
No	.5336785 1.64	74973 .79	9455031 2	.651913	.85025109	.49889538	.75466196	3.2183792	.34721955	.97478141	1.0245337	.63820926	.50629882
No	.48734072 1.30	54344 .70	0912615 2	.0809339	.82591583	.45838086	.66570362	2.0956561	.32687211	1.181176	1.2424977	.57436357	.46422554
No	3.1436939 .568	73911 .89	9847744 .4	47591211	.47454398	1.2968406	.96144633	.51985758	1.0576772	.31632539	.32714859	1.671544	3.1745267
No	.42115734 1.00	62115 .50	6340025 1	.5634368	.65819616	.40818395	.56306271	1.3319308	.29858525	1.6261199	1.477723	.48050175	.40514344
No	.77036807 4.12	34092 1.0	0979905 1	.9524805	.74802566	.71589023	1.3931538	3.0250009	.43937508	.6128589	.63265935	.96640812	.72050873
No	.77918938 2.30	22573 .70	6860291 1	.3414165	.52928388	.87872363	1.7818686	1.3662224	.48524947	.50266018	.50215286	.85319324	.75752416
No	.60692158 3.44	08404 .69	9530449 2	.6762765	.5601009	.63943368	1.0595415	2.0951772	.40227694	.62797488	.61725378	.68184958	.58693583
No	5.3787902 .710	84823 1.2	2831649 .:	57428875	.56021186	1.3338063	1.3352853	.64236116	.80363616	.35875934	.37258914	4.398412	3.0654717
No	1.9920376 1.04	05554 1.:	5094408 .	76876239	.6244451	1.2983876	2.6929172	.88781007	.65184016	.41782366	.4330015	3.3323753	1.6577371
No	1.0334639 1.44	95896 .84	4136698 .9	95999123	.51472362	1.256328	3.803933	1.0294605	.58201373	.43962783	.44381521	1.0839081	1.0105128
No	.43101071 .894	88105 .63	3420536 1	.1938517	.89225558	.39999278	.54856872	1.2159263	.29790857	1.6906368	2.0824019	.50393099	.41118172
No	.47101874 1.32	19517 .64	4852826 2	.3946707	.71933648	.45316148	.65336297	1.995969	.32240295	1.2055072	1.192011	.54603677	.45101319
No	.92635241 1.38	68584 .7:	5529908 .9	9480663	.48691121	1.1875911	2.5277416	.98582741	.5674437	.43525461	.43666045	.94633772	.91804071
No	.62767001 1.23	37234 .5′	7091983 .9	99000637	.42981756	.77577597	1.1071862	.92246007	.45909216	.4543539	.44502895	.640985	.62671345

No

No 1.8625061 0

No 1.8600924 .9410774 0

No 2.1664004 1.0063157 3.9160292 0

No .46426099 .59115048 .37237022 .39465272 0

No 2.2337129 1.0570645 6.3210693 2.960979 .3846352 0

No .36757254 .45683903 .30754621 .31628313 1.0043053 .31930988 0

No 1.7434779 1.9364088 .9524108 1.1526343 .59770176 .99891229 .42088229 0

No .46373076 .59724704 .37148496 .39183908 6.7740706 .38476699 1.1565211 .58788299 0

]	No	.70183829 .98495119	.51335439 .55986635	1.3302317 .53404	4324 .64125177	1.0844533 1.262917	78 0	
]	No	.46055007 .58674496	.36984049 .39144121	27.454927 .38210	6942 1.0423543	.58980221 8.538297	9 1.2896635 0	
]	No	.84310216 1.3247223	.58238852 .63646213	1.0325543 .61243	3425 .60070368	1.3768074 1.019444	2 3.816701 1.013235	6 0
]	No	2.3456411 3.9641653	1.0415986 1.1934131	.5788113 1.1452	2043 .43009647	3.5691323 .5774217	7 .99891613 .5730036	3 1.3161346 0
]	No	3.9265547 2.7382134	1.2781867 1.5145827	.52534443 1.4246	6554 .39975199	2.920469 .5235599	.85408254 .5203935	9 1.0694584 5.5724649
]	No	.3921531 .49550191	.32459542 .33423328	1.1172807 .33774	4043 5.8513279	.45237854 1.324347	5 .70971539 1.163545	3 .66517064 .46389662
]	No	3.0891367 1.3658858	1.6899402 2.6336044	.46198543 1.700	659 .3530545	2.0312379 .4568388	88 .70711001 .4573529	3 .82684417 1.9193091
]	No	.96781015 1.6968426	.63783826 .69782273	.89126421 .67652	2918 .56758042	1.6282403 .8895242	22 2.3412356 .8783427	5 6.0375885 1.6452962
]	No	.69125207 .90188519	.51362137 .56777339	1.1740882 .52929	9439 .57352496	1.1139898 1.080190	9 4.2057143 1.134064	4 2.4040844 .96151145
]	No	.91386189 1.1278742	.64102683 .73681479	.78380896 .6577	1726 .47245202	1.9182232 .7476791	9 1.7905703 .7667363	9 1.954243 1.3596813
]	No	.45953617 .60811961	.36941505 .38188426	1.345169 .38644	4197 1.8362676	.54185366 1.674405	1 .92047458 1.399883	4 .86949021 .56086753
]	No	.56101819 .79027743	.43120479 .45223763	1.6814725 .4524	668 1.0365647	.7085639 2.002173	2 1.5389437 1.708783	3 1.418867 .72809293
]	No	.58730675 .77469381	.44981137 .48652174	1.9679401 .4650	5776 .70587284	.84149811 1.718044	1 3.5816984 1.860965	1.8656976 .78138522
]	No	7.4436515 1.7678082	1.9929605 2.0257369	.44876559 2.627	7761 .36322278	1.4411632 .4498238	31 .66160557 .4456265	7 .79053047 1.9539212
]	No	3.0270744 1.9215468	1.2733565 1.6366206	.52004358 1.352	7354 .3874077	3.7776505 .5146691	7 .85077098 .5144369	7 1.0392036 3.5241348
]	No	.57417892 .73518029	.4441168 .48262097	1.7721591 .4571	4705 .65905397	.82943523 1.508183	2.8560651 1.673184	4 1.6358098 .75466881
]	No	.57822304 .67130175	.45916872 .51016481	.96134238 .46533	3474 .49443576	.86514763 .8625765	2 1.4621201 .9292371	2 1.1541802 .73166266

0 0 0 0 0 0 0 0 0 0 0 0

No

No .42884616 0

No 2.7248905 .37533957 0

No 1.2725719 .62641131 .92515406 0

No .83789833 .62449903 .72354476 1.7971667 0

No 1.1711605 .50919815 1.02234 1.8763537 2.3208711 0

No .51054965 2.6743581 .43601586 .81145718 .77058377 .61362647 0

- No .64428394 1.2492888 .53407065 1.2541772 1.1455615 .84440022 2.2382769 0
- No .69042827 .77973907 .59511424 1.4255081 2.8976751 1.3022291 .99134467 1.5917772 0
- No 2.7878983 .38725848 2.2451871 .90359711 .64579032 .8255756 .45273372 .5465669 .5585004 0
- No 5.5738479 .41438367 3.9784537 1.20425 .86070596 1.2800553 .48952667 .61688026 .69150681 2.1681544 0
- No .67246943 .71927707 .59045279 1.2898618 3.1703997 1.3424141 .88266657 1.3079022 7.2235627 .54443491 .68107896 0
- No .6709699 .52595626 .62986392 1.0096177 2.1878487 1.5710166 .6070068 .79222995 1.5614418 .54121924 .70871517 1.9407314 0